我正在寻找一个关于哈希表如何工作的解释-用简单的英语为我这样的傻瓜!
例如,我知道它接受键,计算哈希(我正在寻找一个解释),然后执行某种模运算来计算出它在存储值的数组中的位置,但我的知识到此为止。
谁能解释一下过程吗?
编辑:我并不是特别问哈希码是如何计算的,而是对哈希表如何工作的一般概述。
我正在寻找一个关于哈希表如何工作的解释-用简单的英语为我这样的傻瓜!
例如,我知道它接受键,计算哈希(我正在寻找一个解释),然后执行某种模运算来计算出它在存储值的数组中的位置,但我的知识到此为止。
谁能解释一下过程吗?
编辑:我并不是特别问哈希码是如何计算的,而是对哈希表如何工作的一般概述。
当前回答
你取一堆东西,和一个数组。
对于每一个东西,你为它建立一个索引,称为哈希。关于哈希的重要事情是它“分散”了很多;你不希望两个相似的东西有相似的哈希值。
你把东西放到数组中哈希值表示的位置。在一个给定的哈希中可以有多个对象,所以你可以将这些对象存储在数组或其他合适的东西中,我们通常称之为bucket。
当你在哈希中查找东西时,你会经历相同的步骤,计算哈希值,然后查看那个位置的bucket中有什么,并检查它是否是你要寻找的东西。
当你的哈希工作得很好并且你的数组足够大时,在数组的任何特定下标处最多只会有很少的东西,所以你不需要看太多。
额外的好处是,当你的哈希表被访问时,它会把找到的东西(如果有的话)移动到桶的开头,这样下次它就会是第一个被检查的东西。
其他回答
直连地址表
要理解哈希表,直接地址表是我们应该理解的第一个概念。
直接地址表直接使用键作为数组中槽的索引。宇宙键的大小等于数组的大小。在O(1)时间内访问这个键非常快,因为数组支持随机访问操作。
然而,在实现直接地址表之前,有四个注意事项:
要成为有效的数组索引,键应该是整数 键的范围是相当小的,否则,我们将需要一个巨大的数组。 不能将两个不同的键映射到数组中的同一个槽 宇宙键的长度等于数组的长度
事实上,现实生活中并不是很多情况都符合上述要求,所以哈希表就可以救场了
哈希表
哈希表不是直接使用键,而是首先应用数学哈希函数将任意键数据一致地转换为数字,然后使用该哈希结果作为键。
宇宙键的长度可以大于数组的长度,这意味着两个不同的键可以散列到相同的索引(称为散列碰撞)?
实际上,有一些不同的策略来处理它。这里有一个常见的解决方案:我们不将实际值存储在数组中,而是存储一个指向链表的指针,该链表包含散列到该索引的所有键的值。
如果你仍然有兴趣知道如何从头开始实现hashmap,请阅读下面的帖子
这是另一种看待它的方式。
我假设你理解数组A的概念,它支持索引操作,你可以一步找到第I个元素,A[I],不管A有多大。
因此,例如,如果您想存储一组恰好年龄不同的人的信息,一个简单的方法是有一个足够大的数组,并使用每个人的年龄作为数组的索引。这样,你就可以一步获取任何人的信息。
But of course there could be more than one person with the same age, so what you put in the array at each entry is a list of all the people who have that age. So you can get to an individual person's information in one step plus a little bit of search in that list (called a "bucket"). It only slows down if there are so many people that the buckets get big. Then you need a larger array, and some other way to get more identifying information about the person, like the first few letters of their surname, instead of using age.
这是基本思想。不使用年龄,可以使用任何能产生良好价值观传播的人的函数。这就是哈希函数。比如你可以把这个人名字的ASCII表示的每三分之一,按某种顺序打乱。重要的是,您不希望太多人散列到同一个存储桶,因为速度取决于存储桶保持较小。
你取一堆东西,和一个数组。
对于每一个东西,你为它建立一个索引,称为哈希。关于哈希的重要事情是它“分散”了很多;你不希望两个相似的东西有相似的哈希值。
你把东西放到数组中哈希值表示的位置。在一个给定的哈希中可以有多个对象,所以你可以将这些对象存储在数组或其他合适的东西中,我们通常称之为bucket。
当你在哈希中查找东西时,你会经历相同的步骤,计算哈希值,然后查看那个位置的bucket中有什么,并检查它是否是你要寻找的东西。
当你的哈希工作得很好并且你的数组足够大时,在数组的任何特定下标处最多只会有很少的东西,所以你不需要看太多。
额外的好处是,当你的哈希表被访问时,它会把找到的东西(如果有的话)移动到桶的开头,这样下次它就会是第一个被检查的东西。
我的理解是这样的:
这里有一个例子:把整个表想象成一系列的桶。假设您有一个带有字母-数字哈希码的实现,并且每个字母都有一个存储桶。该实现将哈希码以特定字母开头的每个项放入相应的bucket中。
假设你有200个对象,但只有15个对象的哈希码以字母“B”开头。哈希表只需要查找和搜索'B' bucket中的15个对象,而不是所有200个对象。
至于计算哈希码,没有什么神奇的。目标只是让不同的对象返回不同的代码,对于相同的对象返回相同的代码。您可以编写一个类,它总是为所有实例返回相同的整数作为哈希代码,但这实际上会破坏哈希表的用处,因为它只会变成一个巨大的桶。
用法和行话:
哈希表用于快速存储和检索数据(或记录)。 记录使用散列键存储在桶中 哈希键是通过对记录中包含的选定值(键值)应用哈希算法来计算的。所选值必须是所有记录的公共值。 每个桶可以有多条记录,这些记录按照特定的顺序组织。
现实世界的例子:
哈希公司成立于1803年,当时没有任何计算机技术,只有300个文件柜来保存大约3万名客户的详细信息(记录)。每个文件夹都清楚地标识其客户端编号,从0到29,999的唯一编号。
当时的档案管理员必须迅速为工作人员获取和存储客户记录。工作人员决定使用哈希方法来存储和检索他们的记录会更有效。
要归档客户记录,档案管理员将使用写在文件夹上的唯一客户编号。使用这个客户端编号,他们将哈希键调整300,以识别包含它的文件柜。当他们打开文件柜时,他们会发现里面有很多按客户号排序的文件夹。在确定正确的位置后,他们会简单地把它塞进去。
要检索客户记录,档案管理员将在一张纸上获得客户号码。使用这个唯一的客户端编号(哈希键),他们会将其调整300,以确定哪个文件柜拥有客户端文件夹。当他们打开文件柜时,他们会发现里面有很多按客户号排序的文件夹。通过搜索记录,他们可以快速找到客户端文件夹并检索它。
在我们的实际示例中,桶是文件柜,记录是文件夹。
需要记住的一件重要的事情是,计算机(及其算法)处理数字比处理字符串更好。因此,使用索引访问大型数组要比按顺序访问快得多。
正如Simon提到的,我认为非常重要的是哈希部分是转换一个大空间(任意长度,通常是字符串等),并将其映射到一个小空间(已知大小,通常是数字)进行索引。记住这一点非常重要!
因此,在上面的示例中,大约30,000个可能的客户机被映射到一个较小的空间中。
这样做的主要思想是将整个数据集划分为几个部分,以加快实际搜索的速度,而实际搜索通常是耗时的。在我们上面的例子中,300个文件柜中的每个(统计上)将包含大约100条记录。搜索100条记录(不管顺序)要比处理3万条记录快得多。
你可能已经注意到有些人已经这样做了。但是,在大多数情况下,他们只是使用姓氏的第一个字母,而不是设计一个哈希方法来生成哈希键。因此,如果您有26个文件柜,每个文件柜都包含从a到Z的一个字母,理论上您只是将数据分割并增强了归档和检索过程。