我正在寻找一个关于哈希表如何工作的解释-用简单的英语为我这样的傻瓜!

例如,我知道它接受键,计算哈希(我正在寻找一个解释),然后执行某种模运算来计算出它在存储值的数组中的位置,但我的知识到此为止。

谁能解释一下过程吗?

编辑:我并不是特别问哈希码是如何计算的,而是对哈希表如何工作的一般概述。


当前回答

用法和行话:

哈希表用于快速存储和检索数据(或记录)。 记录使用散列键存储在桶中 哈希键是通过对记录中包含的选定值(键值)应用哈希算法来计算的。所选值必须是所有记录的公共值。 每个桶可以有多条记录,这些记录按照特定的顺序组织。

现实世界的例子:

哈希公司成立于1803年,当时没有任何计算机技术,只有300个文件柜来保存大约3万名客户的详细信息(记录)。每个文件夹都清楚地标识其客户端编号,从0到29,999的唯一编号。

当时的档案管理员必须迅速为工作人员获取和存储客户记录。工作人员决定使用哈希方法来存储和检索他们的记录会更有效。

要归档客户记录,档案管理员将使用写在文件夹上的唯一客户编号。使用这个客户端编号,他们将哈希键调整300,以识别包含它的文件柜。当他们打开文件柜时,他们会发现里面有很多按客户号排序的文件夹。在确定正确的位置后,他们会简单地把它塞进去。

要检索客户记录,档案管理员将在一张纸上获得客户号码。使用这个唯一的客户端编号(哈希键),他们会将其调整300,以确定哪个文件柜拥有客户端文件夹。当他们打开文件柜时,他们会发现里面有很多按客户号排序的文件夹。通过搜索记录,他们可以快速找到客户端文件夹并检索它。

在我们的实际示例中,桶是文件柜,记录是文件夹。


需要记住的一件重要的事情是,计算机(及其算法)处理数字比处理字符串更好。因此,使用索引访问大型数组要比按顺序访问快得多。

正如Simon提到的,我认为非常重要的是哈希部分是转换一个大空间(任意长度,通常是字符串等),并将其映射到一个小空间(已知大小,通常是数字)进行索引。记住这一点非常重要!

因此,在上面的示例中,大约30,000个可能的客户机被映射到一个较小的空间中。


这样做的主要思想是将整个数据集划分为几个部分,以加快实际搜索的速度,而实际搜索通常是耗时的。在我们上面的例子中,300个文件柜中的每个(统计上)将包含大约100条记录。搜索100条记录(不管顺序)要比处理3万条记录快得多。

你可能已经注意到有些人已经这样做了。但是,在大多数情况下,他们只是使用姓氏的第一个字母,而不是设计一个哈希方法来生成哈希键。因此,如果您有26个文件柜,每个文件柜都包含从a到Z的一个字母,理论上您只是将数据分割并增强了归档和检索过程。

其他回答

到目前为止,所有的答案都很好,并且从不同的方面了解了哈希表的工作方式。这里有一个简单的例子,可能会有帮助。假设我们想要存储一些带有小写字母字符串的项作为键。

正如simon所解释的,哈希函数用于从大空间映射到小空间。对于我们的例子,一个简单的哈希函数实现可以取字符串的第一个字母,并将其映射为一个整数,因此“短吻鳄”的哈希代码为0,“蜜蜂”的哈希代码为1,“斑马”的哈希代码为25,等等。

接下来,我们有一个包含26个存储桶的数组(在Java中可以是数组列表),我们将项放入与键的哈希码匹配的存储桶中。如果我们有不止一个元素键以相同字母开头,它们就会有相同的哈希码,所以它们都会进入存储桶中寻找那个哈希码所以必须在存储桶中进行线性搜索才能找到一个特定的元素。

在我们的例子中,如果我们只有几十个项目,键横跨字母表,它会工作得很好。然而,如果我们有一百万个条目,或者所有的键都以'a'或'b'开头,那么我们的哈希表就不是理想的。为了获得更好的性能,我们需要一个不同的哈希函数和/或更多的桶。

哈希的计算方式通常不取决于哈希表,而是取决于添加到哈希表中的项。在框架/基类库(如。net和Java)中,每个对象都有一个GetHashCode()(或类似)方法,返回该对象的哈希码。理想的哈希码算法和准确的实现取决于对象中表示的数据。

这是另一种看待它的方式。

我假设你理解数组A的概念,它支持索引操作,你可以一步找到第I个元素,A[I],不管A有多大。

因此,例如,如果您想存储一组恰好年龄不同的人的信息,一个简单的方法是有一个足够大的数组,并使用每个人的年龄作为数组的索引。这样,你就可以一步获取任何人的信息。

But of course there could be more than one person with the same age, so what you put in the array at each entry is a list of all the people who have that age. So you can get to an individual person's information in one step plus a little bit of search in that list (called a "bucket"). It only slows down if there are so many people that the buckets get big. Then you need a larger array, and some other way to get more identifying information about the person, like the first few letters of their surname, instead of using age.

这是基本思想。不使用年龄,可以使用任何能产生良好价值观传播的人的函数。这就是哈希函数。比如你可以把这个人名字的ASCII表示的每三分之一,按某种顺序打乱。重要的是,您不希望太多人散列到同一个存储桶,因为速度取决于存储桶保持较小。

用法和行话:

哈希表用于快速存储和检索数据(或记录)。 记录使用散列键存储在桶中 哈希键是通过对记录中包含的选定值(键值)应用哈希算法来计算的。所选值必须是所有记录的公共值。 每个桶可以有多条记录,这些记录按照特定的顺序组织。

现实世界的例子:

哈希公司成立于1803年,当时没有任何计算机技术,只有300个文件柜来保存大约3万名客户的详细信息(记录)。每个文件夹都清楚地标识其客户端编号,从0到29,999的唯一编号。

当时的档案管理员必须迅速为工作人员获取和存储客户记录。工作人员决定使用哈希方法来存储和检索他们的记录会更有效。

要归档客户记录,档案管理员将使用写在文件夹上的唯一客户编号。使用这个客户端编号,他们将哈希键调整300,以识别包含它的文件柜。当他们打开文件柜时,他们会发现里面有很多按客户号排序的文件夹。在确定正确的位置后,他们会简单地把它塞进去。

要检索客户记录,档案管理员将在一张纸上获得客户号码。使用这个唯一的客户端编号(哈希键),他们会将其调整300,以确定哪个文件柜拥有客户端文件夹。当他们打开文件柜时,他们会发现里面有很多按客户号排序的文件夹。通过搜索记录,他们可以快速找到客户端文件夹并检索它。

在我们的实际示例中,桶是文件柜,记录是文件夹。


需要记住的一件重要的事情是,计算机(及其算法)处理数字比处理字符串更好。因此,使用索引访问大型数组要比按顺序访问快得多。

正如Simon提到的,我认为非常重要的是哈希部分是转换一个大空间(任意长度,通常是字符串等),并将其映射到一个小空间(已知大小,通常是数字)进行索引。记住这一点非常重要!

因此,在上面的示例中,大约30,000个可能的客户机被映射到一个较小的空间中。


这样做的主要思想是将整个数据集划分为几个部分,以加快实际搜索的速度,而实际搜索通常是耗时的。在我们上面的例子中,300个文件柜中的每个(统计上)将包含大约100条记录。搜索100条记录(不管顺序)要比处理3万条记录快得多。

你可能已经注意到有些人已经这样做了。但是,在大多数情况下,他们只是使用姓氏的第一个字母,而不是设计一个哈希方法来生成哈希键。因此,如果您有26个文件柜,每个文件柜都包含从a到Z的一个字母,理论上您只是将数据分割并增强了归档和检索过程。

对于所有寻找编程用语的人,下面是它是如何工作的。高级哈希表的内部实现有许多复杂之处,并且对存储分配/释放和搜索进行了优化,但顶层的思想是非常相同的。

(void) addValue : (object) value
{
   int bucket = calculate_bucket_from_val(value);
   if (bucket) 
   {
       //do nothing, just overwrite
   }
   else   //create bucket
   {
      create_extra_space_for_bucket();
   }
   put_value_into_bucket(bucket,value);
}

(bool) exists : (object) value
{
   int bucket = calculate_bucket_from_val(value);
   return bucket;
}

其中calculate_bucket_from_val()是哈希函数,所有的惟一性魔术都必须在这里发生。

经验法则是: 对于要插入的给定值,bucket必须是唯一的,并且派生自它应该存储的值。

Bucket是存储值的任何空间-这里我将它保持int作为数组索引,但它也可能是一个内存位置。