如何在Python中找到一个数的除法余数呢?
例如: 如果这个数是26,整除数是7,那么整除余数是5。 (因为7+7+7=21,26-21=5。)
有关简单的可整除性测试,请参见如何检查一个数是否能被另一个数整除。
如何在Python中找到一个数的除法余数呢?
例如: 如果这个数是26,整除数是7,那么整除余数是5。 (因为7+7+7=21,26-21=5。)
有关简单的可整除性测试,请参见如何检查一个数是否能被另一个数整除。
取模是正确的答案,但如果你手动做的话,这应该是可行的。
num = input("Enter a number: ")
div = input("Enter a divisor: ")
while num >= div:
num -= div
print num
除法的余数可以使用运算符%来发现:
>>> 26%7
5
如果你同时需要商和模,有一个内置的divmod函数:
>>> seconds= 137
>>> minutes, seconds= divmod(seconds, 60)
如果你想求除法问题的余数,就用实际的余数法则,就像数学一样。当然,这不会给你一个十进制输出。
valone = 8
valtwo = 3
x = valone / valtwo
r = valone - (valtwo * x)
print "Answer: %s with a remainder of %s" % (x, r)
如果你想用计算器的形式,只要代入valone = 8 用valone = int(输入(“值一”))。对valtwo = 3做同样的处理,但显然变量不同。
从Python 3.7开始,有一个新的math.remainder()函数:
from math import remainder
print(remainder(26,7))
输出:
-2.0 # not 5
注意,如上所述,它与%不同。
引用文档:
math.remainder(x, y) Return the IEEE 754-style remainder of x with respect to y. For finite x and finite nonzero y, this is the difference x - n*y, where n is the closest integer to the exact value of the quotient x / y. If x / y is exactly halfway between two consecutive integers, the nearest even integer is used for n. The remainder r = remainder(x, y) thus always satisfies abs(r) <= 0.5 * abs(y). Special cases follow IEEE 754: in particular, remainder(x, math.inf) is x for any finite x, and remainder(x, 0) and remainder(math.inf, x) raise ValueError for any non-NaN x. If the result of the remainder operation is zero, that zero will have the same sign as x. On platforms using IEEE 754 binary floating-point, the result of this operation is always exactly representable: no rounding error is introduced.
Issue29962描述了创建新函数的基本原理。
如果你想在一行代码中得到商和余数(更通用的情况),使用:
quotient, remainder = divmod(dividend, divisor)
#or
divmod(26, 7)
您可以定义一个函数,并将其称为具有2个值的remainder,如rem(number1,number2),返回number1%number2 然后创建一个while,并将其设为true然后为持有编号1和2的函数输出两个输入然后输出(rem(number1,number2)
这是Python中余数的整数版本,它的结果应该与C的“%”操作符相同:
def remainder(n, d):
return (-1 if n < 0 else 1) * (abs(n) % abs(d))
预期结果:
remainder(123, 10) == 3
remainder(123, -10) == 3
remainder(-123, 10) == -3
remainder(-123, -10) == -3