有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。
当前回答
一个简单的方法是:
找出连接 分别指向三角形的三个点 顶点和夹角之和 这些向量。如果它们的和 角度是2*那么点是 在三角形里面。
两个解释替代方案的好网站是:
黑卒和沃尔夫勒姆
其他回答
If you know the co-ordinates of the three vertices and the co-ordinates of the specific point, then you can get the area of the complete triangle. Afterwards, calculate the area of the three triangle segments (one point being the point given and the other two being any two vertices of the triangle). Thus, you will get the area of the three triangle segments. If the sum of these areas are equal to the total area (that you got previously), then, the point should be inside the triangle. Otherwise, the point is not inside the triangle. This should work. If there are any issues, let me know. Thank you.
一个简单的方法是:
找出连接 分别指向三角形的三个点 顶点和夹角之和 这些向量。如果它们的和 角度是2*那么点是 在三角形里面。
两个解释替代方案的好网站是:
黑卒和沃尔夫勒姆
下面是一个高效的Python实现:
def PointInsideTriangle2(pt,tri):
'''checks if point pt(2) is inside triangle tri(3x2). @Developer'''
a = 1/(-tri[1,1]*tri[2,0]+tri[0,1]*(-tri[1,0]+tri[2,0])+ \
tri[0,0]*(tri[1,1]-tri[2,1])+tri[1,0]*tri[2,1])
s = a*(tri[2,0]*tri[0,1]-tri[0,0]*tri[2,1]+(tri[2,1]-tri[0,1])*pt[0]+ \
(tri[0,0]-tri[2,0])*pt[1])
if s<0: return False
else: t = a*(tri[0,0]*tri[1,1]-tri[1,0]*tri[0,1]+(tri[0,1]-tri[1,1])*pt[0]+ \
(tri[1,0]-tri[0,0])*pt[1])
return ((t>0) and (1-s-t>0))
和一个示例输出:
求解如下方程组:
p = p0 + (p1 - p0) * s + (p2 - p0) * t
当0 <= s <= 1和0 <= t <= 1以及s + t <= 1时,点p在三角形内。
S,t和1 - S - t称为点p的重心坐标。
下面是一个python解决方案,它是高效的,文档化的,包含三个单元测试。它具有专业级的质量,并且可以以模块的形式放入您的项目中。
import unittest
###############################################################################
def point_in_triangle(point, triangle):
"""Returns True if the point is inside the triangle
and returns False if it falls outside.
- The argument *point* is a tuple with two elements
containing the X,Y coordinates respectively.
- The argument *triangle* is a tuple with three elements each
element consisting of a tuple of X,Y coordinates.
It works like this:
Walk clockwise or counterclockwise around the triangle
and project the point onto the segment we are crossing
by using the dot product.
Finally, check that the vector created is on the same side
for each of the triangle's segments.
"""
# Unpack arguments
x, y = point
ax, ay = triangle[0]
bx, by = triangle[1]
cx, cy = triangle[2]
# Segment A to B
side_1 = (x - bx) * (ay - by) - (ax - bx) * (y - by)
# Segment B to C
side_2 = (x - cx) * (by - cy) - (bx - cx) * (y - cy)
# Segment C to A
side_3 = (x - ax) * (cy - ay) - (cx - ax) * (y - ay)
# All the signs must be positive or all negative
return (side_1 < 0.0) == (side_2 < 0.0) == (side_3 < 0.0)
###############################################################################
class TestPointInTriangle(unittest.TestCase):
triangle = ((22 , 8),
(12 , 55),
(7 , 19))
def test_inside(self):
point = (15, 20)
self.assertTrue(point_in_triangle(point, self.triangle))
def test_outside(self):
point = (1, 7)
self.assertFalse(point_in_triangle(point, self.triangle))
def test_border_case(self):
"""If the point is exactly on one of the triangle's edges,
we consider it is inside."""
point = (7, 19)
self.assertTrue(point_in_triangle(point, self.triangle))
###############################################################################
if __name__ == "__main__":
suite = unittest.defaultTestLoader.loadTestsFromTestCase(TestPointInTriangle)
unittest.TextTestRunner().run(suite)
上面的算法有一个额外的可选图形测试,以确认其有效性:
import random
from matplotlib import pyplot
from triangle_test import point_in_triangle
###############################################################################
# The area #
size_x = 64
size_y = 64
# The triangle #
triangle = ((22 , 8),
(12 , 55),
(7 , 19))
# Number of random points #
count_points = 10000
# Prepare the figure #
figure = pyplot.figure()
axes = figure.add_subplot(111, aspect='equal')
axes.set_title("Test the 'point_in_triangle' function")
axes.set_xlim(0, size_x)
axes.set_ylim(0, size_y)
# Plot the triangle #
from matplotlib.patches import Polygon
axes.add_patch(Polygon(triangle, linewidth=1, edgecolor='k', facecolor='none'))
# Plot the points #
for i in range(count_points):
x = random.uniform(0, size_x)
y = random.uniform(0, size_y)
if point_in_triangle((x,y), triangle): pyplot.plot(x, y, '.g')
else: pyplot.plot(x, y, '.b')
# Save it #
figure.savefig("point_in_triangle.pdf")
制作以下图表:
推荐文章
- 为什么Python的无穷散列中有π的数字?
- 四舍五入BigDecimal *总是*有两位小数点后
- 从数字中移除无关紧要的尾随零?
- 负数的Mod快把我的脑子都融化了
- 如何计算圆周长上的一点?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?
- 如何确保整数的除法总是四舍五入?
- 如何使用JavaScript比较软件版本号?数量(只)
- 跳跃表vs.二叉搜索树
- 如何使四舍五入百分比加起来为100%
- 是否有可能得到一个函数的所有参数作为单一对象内的函数?
- LL和LR解析之间的区别是什么?
- 如何缩小与已知的最小值和最大值的数字范围