有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。


当前回答

我只是想用一些简单的向量数学来解释安德里亚斯给出的重心坐标解,它会更容易理解。

区域A定义为s * v02 + t * v01给出的任意向量,条件s >= 0, t >= 0。如果三角形v0 v1 v2内的任意一点,它一定在区域A内。

如果进一步限制s, t属于[0,1]。得到包含s * v02 + t * v01的所有向量的区域B,条件s, t属于[0,1]。值得注意的是,区域B的下部是三角形v0, v1, v2的镜像。问题来了,我们是否可以给定一定的s和t条件,来进一步排除区域B的低部分。

假设我们给出一个值s, t在[0,1]内变化。在下图中,点p位于v1v2的边缘。s * v02 + t * v01的所有向量沿着虚线通过简单向量和得到。在v1v2和虚线交点p处,我们有:

(1-S)|V0v2|/ |v0v2|= tp|v0v1|/ |v0v1|

得到1 - s = tp,然后1 = s + tp。如果任意t > tp,即1 < s + t where在双虚线上,则该向量在三角形外,任意t <= tp,即1 >= s + t where在单虚线上,则该向量在三角形内。

如果我们给出[0,1]中的任意s,对应的t必须满足1 >= s + t,对于三角形内的向量。

最后我们得到v = s * v02 +t * v01, v在三角形内,条件s, t, s+t属于[0,1]。然后翻译到点,我们有

P - p0 = s * (p1 - p0) + t * (p2 - p0), and s, t, s + t in [0,1]

和Andreas解方程组的解是一样的 P = p0 + s * (p1 - p0) + t * (p2 - p0),带s, t, s + t属于[0,1]。

其他回答

bool point2Dtriangle(double e,double f, double a,double b,double c, double g,double h,double i, double v, double w){
    /* inputs: e=point.x, f=point.y
               a=triangle.Ax, b=triangle.Bx, c=triangle.Cx 
               g=triangle.Ay, h=triangle.By, i=triangle.Cy */
    v = 1 - (f * (b - c) + h * (c - e) + i * (e - b)) / (g * (b - c) + h * (c - a) + i * (a - b));
    w = (f * (a - b) + g * (b - e) + h * (e - a)) / (g * (b - c) + h * (c - a) + i * (a - b));
    if (*v > -0.0 && *v < 1.0000001 && *w > -0.0 && *w < *v) return true;//is inside
    else return false;//is outside
    return 0;
} 

从质心转换而来的几乎完美的笛卡尔坐标 在*v (x)和*w (y)双精度内导出。 在每种情况下,两个导出双精度对象前面都应该有一个*字符,可能是*v和*w 代码也可以用于四边形的另一个三角形。 特此签名只写三角形abc从顺时针abcd的四边形。

A---B
|..\\.o|  
|....\\.| 
D---C 

o点在ABC三角形内 对于带有第二个三角形的测试,将此函数称为CDA方向,*v=1-*v后的结果应正确;* w = 1 - * w;为了四合院

因为没有JS的答案, 顺时针和逆时针解决方案:

function triangleContains(ax, ay, bx, by, cx, cy, x, y) {

    let det = (bx - ax) * (cy - ay) - (by - ay) * (cx - ax)

    return  det * ((bx - ax) * (y - ay) - (by - ay) * (x - ax)) >= 0 &&
            det * ((cx - bx) * (y - by) - (cy - by) * (x - bx)) >= 0 &&
            det * ((ax - cx) * (y - cy) - (ay - cy) * (x - cx)) >= 0    

}

编辑:修正了两个拼写错误(关于符号和比较)。

https://jsfiddle.net/jniac/rctb3gfL/

function triangleContains(ax, ay, bx, by, cx, cy, x, y) { let det = (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) return det * ((bx - ax) * (y - ay) - (by - ay) * (x - ax)) > 0 && det * ((cx - bx) * (y - by) - (cy - by) * (x - bx)) > 0 && det * ((ax - cx) * (y - cy) - (ay - cy) * (x - cx)) > 0 } let width = 500, height = 500 // clockwise let triangle1 = { A : { x: 10, y: -10 }, C : { x: 20, y: 100 }, B : { x: -90, y: 10 }, color: '#f00', } // counter clockwise let triangle2 = { A : { x: 20, y: -60 }, B : { x: 90, y: 20 }, C : { x: 20, y: 60 }, color: '#00f', } let scale = 2 let mouse = { x: 0, y: 0 } // DRAW > let wrapper = document.querySelector('div.wrapper') wrapper.onmousemove = ({ layerX:x, layerY:y }) => { x -= width / 2 y -= height / 2 x /= scale y /= scale mouse.x = x mouse.y = y drawInteractive() } function drawArrow(ctx, A, B) { let v = normalize(sub(B, A), 3) let I = center(A, B) let p p = add(I, rotate(v, 90), v) ctx.moveTo(p.x, p.y) ctx.lineTo(I.x, I .y) p = add(I, rotate(v, -90), v) ctx.lineTo(p.x, p.y) } function drawTriangle(ctx, { A, B, C, color }) { ctx.beginPath() ctx.moveTo(A.x, A.y) ctx.lineTo(B.x, B.y) ctx.lineTo(C.x, C.y) ctx.closePath() ctx.fillStyle = color + '6' ctx.strokeStyle = color ctx.fill() drawArrow(ctx, A, B) drawArrow(ctx, B, C) drawArrow(ctx, C, A) ctx.stroke() } function contains({ A, B, C }, P) { return triangleContains(A.x, A.y, B.x, B.y, C.x, C.y, P.x, P.y) } function resetCanvas(canvas) { canvas.width = width canvas.height = height let ctx = canvas.getContext('2d') ctx.resetTransform() ctx.clearRect(0, 0, width, height) ctx.setTransform(scale, 0, 0, scale, width/2, height/2) } function drawDots() { let canvas = document.querySelector('canvas#dots') let ctx = canvas.getContext('2d') resetCanvas(canvas) let count = 1000 for (let i = 0; i < count; i++) { let x = width * (Math.random() - .5) let y = width * (Math.random() - .5) ctx.beginPath() ctx.ellipse(x, y, 1, 1, 0, 0, 2 * Math.PI) if (contains(triangle1, { x, y })) { ctx.fillStyle = '#f00' } else if (contains(triangle2, { x, y })) { ctx.fillStyle = '#00f' } else { ctx.fillStyle = '#0003' } ctx.fill() } } function drawInteractive() { let canvas = document.querySelector('canvas#interactive') let ctx = canvas.getContext('2d') resetCanvas(canvas) ctx.beginPath() ctx.moveTo(0, -height/2) ctx.lineTo(0, height/2) ctx.moveTo(-width/2, 0) ctx.lineTo(width/2, 0) ctx.strokeStyle = '#0003' ctx.stroke() drawTriangle(ctx, triangle1) drawTriangle(ctx, triangle2) ctx.beginPath() ctx.ellipse(mouse.x, mouse.y, 4, 4, 0, 0, 2 * Math.PI) if (contains(triangle1, mouse)) { ctx.fillStyle = triangle1.color + 'a' ctx.fill() } else if (contains(triangle2, mouse)) { ctx.fillStyle = triangle2.color + 'a' ctx.fill() } else { ctx.strokeStyle = 'black' ctx.stroke() } } drawDots() drawInteractive() // trigo function add(...points) { let x = 0, y = 0 for (let point of points) { x += point.x y += point.y } return { x, y } } function center(...points) { let x = 0, y = 0 for (let point of points) { x += point.x y += point.y } x /= points.length y /= points.length return { x, y } } function sub(A, B) { let x = A.x - B.x let y = A.y - B.y return { x, y } } function normalize({ x, y }, length = 10) { let r = length / Math.sqrt(x * x + y * y) x *= r y *= r return { x, y } } function rotate({ x, y }, angle = 90) { let length = Math.sqrt(x * x + y * y) angle *= Math.PI / 180 angle += Math.atan2(y, x) x = length * Math.cos(angle) y = length * Math.sin(angle) return { x, y } } * { margin: 0; } html { font-family: monospace; } body { padding: 32px; } span.red { color: #f00; } span.blue { color: #00f; } canvas { position: absolute; border: solid 1px #ddd; } <p><span class="red">red triangle</span> is clockwise</p> <p><span class="blue">blue triangle</span> is couter clockwise</p> <br> <div class="wrapper"> <canvas id="dots"></canvas> <canvas id="interactive"></canvas> </div>

我在这里使用与上面描述的相同的方法:如果一个点分别位于AB, BC, CA的“同”边,则它在ABC内。

一般来说,最简单(也是最优)的算法是检查由边创建的半平面的哪一边是点。

以下是关于GameDev的一些高质量信息,包括性能问题。

这里有一些代码让你开始:

float sign (fPoint p1, fPoint p2, fPoint p3)
{
    return (p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y);
}

bool PointInTriangle (fPoint pt, fPoint v1, fPoint v2, fPoint v3)
{
    float d1, d2, d3;
    bool has_neg, has_pos;

    d1 = sign(pt, v1, v2);
    d2 = sign(pt, v2, v3);
    d3 = sign(pt, v3, v1);

    has_neg = (d1 < 0) || (d2 < 0) || (d3 < 0);
    has_pos = (d1 > 0) || (d2 > 0) || (d3 > 0);

    return !(has_neg && has_pos);
}

由andreasdr和Perro Azul发布的重心方法的c#版本。我添加了一个检查,当s和t有相反的符号(而且都不为零)时,放弃面积计算,因为潜在地避免三分之一的乘法成本似乎是合理的。

public static bool PointInTriangle(Point p, Point p0, Point p1, Point p2)
{
    var s = (p0.X - p2.X) * (p.Y - p2.Y) - (p0.Y - p2.Y) * (p.X - p2.X);
    var t = (p1.X - p0.X) * (p.Y - p0.Y) - (p1.Y - p0.Y) * (p.X - p0.X);

    if ((s < 0) != (t < 0) && s != 0 && t != 0)
        return false;

    var d = (p2.X - p1.X) * (p.Y - p1.Y) - (p2.Y - p1.Y) * (p.X - p1.X);
    return d == 0 || (d < 0) == (s + t <= 0);
}

2021年更新:这个版本正确处理任意一个缠绕方向(顺时针和逆时针)指定的三角形。请注意,对于恰好位于三角形边缘上的点,本页上的一些其他答案会给出不一致的结果,这取决于三角形三个点的排列顺序。这些点被认为是“在”三角形中,这段代码正确地返回true,而不管缠绕方向如何。

我在最后一次尝试谷歌和找到这个页面之前写了这段代码,所以我想我应该分享它。它基本上是Kisielewicz答案的优化版本。我也研究了重心法,但从维基百科的文章来看,我很难看出它是如何更有效的(我猜有一些更深层次的等价性)。不管怎样,这个算法的优点是不用除法;一个潜在的问题是边缘检测的行为取决于方向。

bool intpoint_inside_trigon(intPoint s, intPoint a, intPoint b, intPoint c)
{
    int as_x = s.x - a.x;
    int as_y = s.y - a.y;

    bool s_ab = (b.x - a.x) * as_y - (b.y - a.y) * as_x > 0;

    if ((c.x - a.x) * as_y - (c.y - a.y) * as_x > 0 == s_ab) 
        return false;
    if ((c.x - b.x) * (s.y - b.y) - (c.y - b.y)*(s.x - b.x) > 0 != s_ab) 
        return false;
    return true;
}

换句话说,思想是这样的:点s是在直线AB和直线AC的左边还是右边?如果是真的,它就不可能在里面。如果为假,则至少在“锥”内满足条件。现在,因为我们知道三角形(三角形)内的一个点必须与BC(以及CA)在AB的同一侧,我们检查它们是否不同。如果有,s就不可能在里面,否则s一定在里面。

计算中的一些关键字是线半平面和行列式(2x2叉乘)。也许一个更有教学意义的方法是将它看作是一个在AB、BC和CA的同一侧(左或右)的点。然而,上面的方法似乎更适合进行一些优化。