有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。


当前回答

重心法Java版:

class Triangle {
    Triangle(double x1, double y1, double x2, double y2, double x3,
            double y3) {
        this.x3 = x3;
        this.y3 = y3;
        y23 = y2 - y3;
        x32 = x3 - x2;
        y31 = y3 - y1;
        x13 = x1 - x3;
        det = y23 * x13 - x32 * y31;
        minD = Math.min(det, 0);
        maxD = Math.max(det, 0);
    }

    boolean contains(double x, double y) {
        double dx = x - x3;
        double dy = y - y3;
        double a = y23 * dx + x32 * dy;
        if (a < minD || a > maxD)
            return false;
        double b = y31 * dx + x13 * dy;
        if (b < minD || b > maxD)
            return false;
        double c = det - a - b;
        if (c < minD || c > maxD)
            return false;
        return true;
    }

    private final double x3, y3;
    private final double y23, x32, y31, x13;
    private final double det, minD, maxD;
}

上面的代码可以准确地处理整数,假设没有溢出。它也适用于顺时针和逆时针三角形。它不适用于共线三角形(但您可以通过测试det==0来检查)。

如果你要用同一个三角形测试不同的点,以重心为中心的版本是最快的。

重心版本在3个三角形点上是不对称的,所以它可能不如Kornel Kisielewicz的边缘半平面版本一致,因为浮点舍入误差。

图片来源:我根据维基百科关于重心坐标的文章制作了上面的代码。

其他回答

我只是想用一些简单的向量数学来解释安德里亚斯给出的重心坐标解,它会更容易理解。

区域A定义为s * v02 + t * v01给出的任意向量,条件s >= 0, t >= 0。如果三角形v0 v1 v2内的任意一点,它一定在区域A内。

如果进一步限制s, t属于[0,1]。得到包含s * v02 + t * v01的所有向量的区域B,条件s, t属于[0,1]。值得注意的是,区域B的下部是三角形v0, v1, v2的镜像。问题来了,我们是否可以给定一定的s和t条件,来进一步排除区域B的低部分。

假设我们给出一个值s, t在[0,1]内变化。在下图中,点p位于v1v2的边缘。s * v02 + t * v01的所有向量沿着虚线通过简单向量和得到。在v1v2和虚线交点p处,我们有:

(1-S)|V0v2|/ |v0v2|= tp|v0v1|/ |v0v1|

得到1 - s = tp,然后1 = s + tp。如果任意t > tp,即1 < s + t where在双虚线上,则该向量在三角形外,任意t <= tp,即1 >= s + t where在单虚线上,则该向量在三角形内。

如果我们给出[0,1]中的任意s,对应的t必须满足1 >= s + t,对于三角形内的向量。

最后我们得到v = s * v02 +t * v01, v在三角形内,条件s, t, s+t属于[0,1]。然后翻译到点,我们有

P - p0 = s * (p1 - p0) + t * (p2 - p0), and s, t, s + t in [0,1]

和Andreas解方程组的解是一样的 P = p0 + s * (p1 - p0) + t * (p2 - p0),带s, t, s + t属于[0,1]。

我要做的是预先计算三个面法线,

在三维中通过边向量和面法向量的叉乘得到。 通过简单地交换分量和负一个,

对于任意一条边的内/外都是边法线和点到点向量的点积,改变符号。重复其他两(或更多)面。

好处:

在同一个三角形上进行多点测试,很多都是预先计算好的。 早期拒签的常见情况是外分多内分。(如果点分布偏向一侧,可以先测试这一侧。)

一般来说,最简单(也是最优)的算法是检查由边创建的半平面的哪一边是点。

以下是关于GameDev的一些高质量信息,包括性能问题。

这里有一些代码让你开始:

float sign (fPoint p1, fPoint p2, fPoint p3)
{
    return (p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y);
}

bool PointInTriangle (fPoint pt, fPoint v1, fPoint v2, fPoint v3)
{
    float d1, d2, d3;
    bool has_neg, has_pos;

    d1 = sign(pt, v1, v2);
    d2 = sign(pt, v2, v3);
    d3 = sign(pt, v3, v1);

    has_neg = (d1 < 0) || (d2 < 0) || (d3 < 0);
    has_pos = (d1 > 0) || (d2 > 0) || (d3 > 0);

    return !(has_neg && has_pos);
}

有一些恼人的边条件,即一个点恰好在两个相邻三角形的公共边上。这个点不可能在两个三角形中,也不可能不在两个三角形中。你需要一种任意但一致的方式来分配点。例如,画一条横线穿过这个点。如果这条直线与三角形的另一边在右侧相交,则该点被视为在三角形内。如果交点在左边,则该点在外面。

如果该点所在的直线是水平的,则使用above/below。

如果该点位于多个三角形的公共顶点上,则使用该点与中心点形成的角最小的三角形。

更有趣的是:三个点可以在一条直线上(零度),例如(0,0)-(0,10)-(0,5)。在三角剖分算法中,“耳朵”(0,10)必须被切掉,生成的“三角形”是直线的退化情况。

老实说,这就像Simon P Steven的回答一样简单,但是用这种方法,你无法控制你是否想要包含三角形边缘上的点。

我的方法有点不同,但非常基本。考虑下面的三角形;

为了在三角形中有这个点我们必须满足三个条件

ACE角(绿色)应小于ACB角(红色) ECB角(蓝色)应小于ACB角(红色) 当点E和点C的x和y值应用于|AB|直线方程时,点E和点C的符号应该相同。

在此方法中,您可以完全控制单独包含或排除边缘上的点。所以你可以检查一个点是否在三角形中,例如,只包括|AC|边。

所以我的JavaScript解决方案是这样的;

function isInTriangle(t,p){ function isInBorder(a,b,c,p){ var m = (a.y - b.y) / (a.x - b.x); // calculate the slope return Math.sign(p.y - m*p.x + m*a.x - a.y) === Math.sign(c.y - m*c.x + m*a.x - a.y); } function findAngle(a,b,c){ // calculate the C angle from 3 points. var ca = Math.hypot(c.x-a.x, c.y-a.y), // ca edge length cb = Math.hypot(c.x-b.x, c.y-b.y), // cb edge length ab = Math.hypot(a.x-b.x, a.y-b.y); // ab edge length return Math.acos((ca*ca + cb*cb - ab*ab) / (2*ca*cb)); // return the C angle } var pas = t.slice(1) .map(tp => findAngle(p,tp,t[0])), // find the angle between (p,t[0]) with (t[1],t[0]) & (t[2],t[0]) ta = findAngle(t[1],t[2],t[0]); return pas[0] < ta && pas[1] < ta && isInBorder(t[1],t[2],t[0],p); } var triangle = [{x:3, y:4},{x:10, y:8},{x:6, y:10}], point1 = {x:3, y:9}, point2 = {x:7, y:9}; console.log(isInTriangle(triangle,point1)); console.log(isInTriangle(triangle,point2));