有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。
当前回答
重心法Java版:
class Triangle {
Triangle(double x1, double y1, double x2, double y2, double x3,
double y3) {
this.x3 = x3;
this.y3 = y3;
y23 = y2 - y3;
x32 = x3 - x2;
y31 = y3 - y1;
x13 = x1 - x3;
det = y23 * x13 - x32 * y31;
minD = Math.min(det, 0);
maxD = Math.max(det, 0);
}
boolean contains(double x, double y) {
double dx = x - x3;
double dy = y - y3;
double a = y23 * dx + x32 * dy;
if (a < minD || a > maxD)
return false;
double b = y31 * dx + x13 * dy;
if (b < minD || b > maxD)
return false;
double c = det - a - b;
if (c < minD || c > maxD)
return false;
return true;
}
private final double x3, y3;
private final double y23, x32, y31, x13;
private final double det, minD, maxD;
}
上面的代码可以准确地处理整数,假设没有溢出。它也适用于顺时针和逆时针三角形。它不适用于共线三角形(但您可以通过测试det==0来检查)。
如果你要用同一个三角形测试不同的点,以重心为中心的版本是最快的。
重心版本在3个三角形点上是不对称的,所以它可能不如Kornel Kisielewicz的边缘半平面版本一致,因为浮点舍入误差。
图片来源:我根据维基百科关于重心坐标的文章制作了上面的代码。
其他回答
求解如下方程组:
p = p0 + (p1 - p0) * s + (p2 - p0) * t
当0 <= s <= 1和0 <= t <= 1以及s + t <= 1时,点p在三角形内。
S,t和1 - S - t称为点p的重心坐标。
python中的其他函数,比Developer的方法更快(至少对我来说),并受到Cédric Dufour解决方案的启发:
def ptInTriang(p_test, p0, p1, p2):
dX = p_test[0] - p0[0]
dY = p_test[1] - p0[1]
dX20 = p2[0] - p0[0]
dY20 = p2[1] - p0[1]
dX10 = p1[0] - p0[0]
dY10 = p1[1] - p0[1]
s_p = (dY20*dX) - (dX20*dY)
t_p = (dX10*dY) - (dY10*dX)
D = (dX10*dY20) - (dY10*dX20)
if D > 0:
return ( (s_p >= 0) and (t_p >= 0) and (s_p + t_p) <= D )
else:
return ( (s_p <= 0) and (t_p <= 0) and (s_p + t_p) >= D )
你可以用:
X_size = 64
Y_size = 64
ax_x = np.arange(X_size).astype(np.float32)
ax_y = np.arange(Y_size).astype(np.float32)
coords=np.meshgrid(ax_x,ax_y)
points_unif = (coords[0].reshape(X_size*Y_size,),coords[1].reshape(X_size*Y_size,))
p_test = np.array([0 , 0])
p0 = np.array([22 , 8])
p1 = np.array([12 , 55])
p2 = np.array([7 , 19])
fig = plt.figure(dpi=300)
for i in range(0,X_size*Y_size):
p_test[0] = points_unif[0][i]
p_test[1] = points_unif[1][i]
if ptInTriang(p_test, p0, p1, p2):
plt.plot(p_test[0], p_test[1], '.g')
else:
plt.plot(p_test[0], p_test[1], '.r')
绘制网格需要花费很多时间,但是该网格在0.0195319652557秒内测试,而开发人员代码为0.0844349861145秒。
最后是代码注释:
# Using barycentric coordintes, any point inside can be described as:
# X = p0.x * r + p1.x * s + p2.x * t
# Y = p0.y * r + p1.y * s + p2.y * t
# with:
# r + s + t = 1 and 0 < r,s,t < 1
# then: r = 1 - s - t
# and then:
# X = p0.x * (1 - s - t) + p1.x * s + p2.x * t
# Y = p0.y * (1 - s - t) + p1.y * s + p2.y * t
#
# X = p0.x + (p1.x-p0.x) * s + (p2.x-p0.x) * t
# Y = p0.y + (p1.y-p0.y) * s + (p2.y-p0.y) * t
#
# X - p0.x = (p1.x-p0.x) * s + (p2.x-p0.x) * t
# Y - p0.y = (p1.y-p0.y) * s + (p2.y-p0.y) * t
#
# we have to solve:
#
# [ X - p0.x ] = [(p1.x-p0.x) (p2.x-p0.x)] * [ s ]
# [ Y - p0.Y ] [(p1.y-p0.y) (p2.y-p0.y)] [ t ]
#
# ---> b = A*x ; ---> x = A^-1 * b
#
# [ s ] = A^-1 * [ X - p0.x ]
# [ t ] [ Y - p0.Y ]
#
# A^-1 = 1/D * adj(A)
#
# The adjugate of A:
#
# adj(A) = [(p2.y-p0.y) -(p2.x-p0.x)]
# [-(p1.y-p0.y) (p1.x-p0.x)]
#
# The determinant of A:
#
# D = (p1.x-p0.x)*(p2.y-p0.y) - (p1.y-p0.y)*(p2.x-p0.x)
#
# Then:
#
# s_p = { (p2.y-p0.y)*(X - p0.x) - (p2.x-p0.x)*(Y - p0.Y) }
# t_p = { (p1.x-p0.x)*(Y - p0.Y) - (p1.y-p0.y)*(X - p0.x) }
#
# s = s_p / D
# t = t_p / D
#
# Recovering r:
#
# r = 1 - (s_p + t_p)/D
#
# Since we only want to know if it is insidem not the barycentric coordinate:
#
# 0 < 1 - (s_p + t_p)/D < 1
# 0 < (s_p + t_p)/D < 1
# 0 < (s_p + t_p) < D
#
# The condition is:
# if D > 0:
# s_p > 0 and t_p > 0 and (s_p + t_p) < D
# else:
# s_p < 0 and t_p < 0 and (s_p + t_p) > D
#
# s_p = { dY20*dX - dX20*dY }
# t_p = { dX10*dY - dY10*dX }
# D = dX10*dY20 - dY10*dX20
下面是一个高效的Python实现:
def PointInsideTriangle2(pt,tri):
'''checks if point pt(2) is inside triangle tri(3x2). @Developer'''
a = 1/(-tri[1,1]*tri[2,0]+tri[0,1]*(-tri[1,0]+tri[2,0])+ \
tri[0,0]*(tri[1,1]-tri[2,1])+tri[1,0]*tri[2,1])
s = a*(tri[2,0]*tri[0,1]-tri[0,0]*tri[2,1]+(tri[2,1]-tri[0,1])*pt[0]+ \
(tri[0,0]-tri[2,0])*pt[1])
if s<0: return False
else: t = a*(tri[0,0]*tri[1,1]-tri[1,0]*tri[0,1]+(tri[0,1]-tri[1,1])*pt[0]+ \
(tri[1,0]-tri[0,0])*pt[1])
return ((t>0) and (1-s-t>0))
和一个示例输出:
这是确定一个点是在三角形的内、外还是在三角形的臂上的最简单的概念。
用行列式确定三角形内的点:
最简单的工作代码:
#-*- coding: utf-8 -*-
import numpy as np
tri_points = [(1,1),(2,3),(3,1)]
def pisinTri(point,tri_points):
Dx , Dy = point
A,B,C = tri_points
Ax, Ay = A
Bx, By = B
Cx, Cy = C
M1 = np.array([ [Dx - Bx, Dy - By, 0],
[Ax - Bx, Ay - By, 0],
[1 , 1 , 1]
])
M2 = np.array([ [Dx - Ax, Dy - Ay, 0],
[Cx - Ax, Cy - Ay, 0],
[1 , 1 , 1]
])
M3 = np.array([ [Dx - Cx, Dy - Cy, 0],
[Bx - Cx, By - Cy, 0],
[1 , 1 , 1]
])
M1 = np.linalg.det(M1)
M2 = np.linalg.det(M2)
M3 = np.linalg.det(M3)
print(M1,M2,M3)
if(M1 == 0 or M2 == 0 or M3 ==0):
print("Point: ",point," lies on the arms of Triangle")
elif((M1 > 0 and M2 > 0 and M3 > 0)or(M1 < 0 and M2 < 0 and M3 < 0)):
#if products is non 0 check if all of their sign is same
print("Point: ",point," lies inside the Triangle")
else:
print("Point: ",point," lies outside the Triangle")
print("Vertices of Triangle: ",tri_points)
points = [(0,0),(1,1),(2,3),(3,1),(2,2),(4,4),(1,0),(0,4)]
for c in points:
pisinTri(c,tri_points)
我在最后一次尝试谷歌和找到这个页面之前写了这段代码,所以我想我应该分享它。它基本上是Kisielewicz答案的优化版本。我也研究了重心法,但从维基百科的文章来看,我很难看出它是如何更有效的(我猜有一些更深层次的等价性)。不管怎样,这个算法的优点是不用除法;一个潜在的问题是边缘检测的行为取决于方向。
bool intpoint_inside_trigon(intPoint s, intPoint a, intPoint b, intPoint c)
{
int as_x = s.x - a.x;
int as_y = s.y - a.y;
bool s_ab = (b.x - a.x) * as_y - (b.y - a.y) * as_x > 0;
if ((c.x - a.x) * as_y - (c.y - a.y) * as_x > 0 == s_ab)
return false;
if ((c.x - b.x) * (s.y - b.y) - (c.y - b.y)*(s.x - b.x) > 0 != s_ab)
return false;
return true;
}
换句话说,思想是这样的:点s是在直线AB和直线AC的左边还是右边?如果是真的,它就不可能在里面。如果为假,则至少在“锥”内满足条件。现在,因为我们知道三角形(三角形)内的一个点必须与BC(以及CA)在AB的同一侧,我们检查它们是否不同。如果有,s就不可能在里面,否则s一定在里面。
计算中的一些关键字是线半平面和行列式(2x2叉乘)。也许一个更有教学意义的方法是将它看作是一个在AB、BC和CA的同一侧(左或右)的点。然而,上面的方法似乎更适合进行一些优化。
推荐文章
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在O(n)中找到长度为n的无序数组中的第k大元素?
- 对于有符号的数,为什么更喜欢2的补数而不是大小?
- 一个用于膨胀/收缩(抵消,缓冲)多边形的算法
- 圆-矩形碰撞检测(相交)
- 我如何使用Node.js Crypto创建HMAC-SHA1哈希?
- 在ImageView中使用“animated circle”来加载东西
- 如何用动态规划确定最长递增子序列?
- 在c++程序中以编程方式检测字节序
- 理解递归
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字
- HSL到RGB的颜色转换
- 使用Java在原语数组中查找最大/最小值