有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。


当前回答

我在最后一次尝试谷歌和找到这个页面之前写了这段代码,所以我想我应该分享它。它基本上是Kisielewicz答案的优化版本。我也研究了重心法,但从维基百科的文章来看,我很难看出它是如何更有效的(我猜有一些更深层次的等价性)。不管怎样,这个算法的优点是不用除法;一个潜在的问题是边缘检测的行为取决于方向。

bool intpoint_inside_trigon(intPoint s, intPoint a, intPoint b, intPoint c)
{
    int as_x = s.x - a.x;
    int as_y = s.y - a.y;

    bool s_ab = (b.x - a.x) * as_y - (b.y - a.y) * as_x > 0;

    if ((c.x - a.x) * as_y - (c.y - a.y) * as_x > 0 == s_ab) 
        return false;
    if ((c.x - b.x) * (s.y - b.y) - (c.y - b.y)*(s.x - b.x) > 0 != s_ab) 
        return false;
    return true;
}

换句话说,思想是这样的:点s是在直线AB和直线AC的左边还是右边?如果是真的,它就不可能在里面。如果为假,则至少在“锥”内满足条件。现在,因为我们知道三角形(三角形)内的一个点必须与BC(以及CA)在AB的同一侧,我们检查它们是否不同。如果有,s就不可能在里面,否则s一定在里面。

计算中的一些关键字是线半平面和行列式(2x2叉乘)。也许一个更有教学意义的方法是将它看作是一个在AB、BC和CA的同一侧(左或右)的点。然而,上面的方法似乎更适合进行一些优化。

其他回答

我只是想用一些简单的向量数学来解释安德里亚斯给出的重心坐标解,它会更容易理解。

区域A定义为s * v02 + t * v01给出的任意向量,条件s >= 0, t >= 0。如果三角形v0 v1 v2内的任意一点,它一定在区域A内。

如果进一步限制s, t属于[0,1]。得到包含s * v02 + t * v01的所有向量的区域B,条件s, t属于[0,1]。值得注意的是,区域B的下部是三角形v0, v1, v2的镜像。问题来了,我们是否可以给定一定的s和t条件,来进一步排除区域B的低部分。

假设我们给出一个值s, t在[0,1]内变化。在下图中,点p位于v1v2的边缘。s * v02 + t * v01的所有向量沿着虚线通过简单向量和得到。在v1v2和虚线交点p处,我们有:

(1-S)|V0v2|/ |v0v2|= tp|v0v1|/ |v0v1|

得到1 - s = tp,然后1 = s + tp。如果任意t > tp,即1 < s + t where在双虚线上,则该向量在三角形外,任意t <= tp,即1 >= s + t where在单虚线上,则该向量在三角形内。

如果我们给出[0,1]中的任意s,对应的t必须满足1 >= s + t,对于三角形内的向量。

最后我们得到v = s * v02 +t * v01, v在三角形内,条件s, t, s+t属于[0,1]。然后翻译到点,我们有

P - p0 = s * (p1 - p0) + t * (p2 - p0), and s, t, s + t in [0,1]

和Andreas解方程组的解是一样的 P = p0 + s * (p1 - p0) + t * (p2 - p0),带s, t, s + t属于[0,1]。

python中的其他函数,比Developer的方法更快(至少对我来说),并受到Cédric Dufour解决方案的启发:

def ptInTriang(p_test, p0, p1, p2):       
     dX = p_test[0] - p0[0]
     dY = p_test[1] - p0[1]
     dX20 = p2[0] - p0[0]
     dY20 = p2[1] - p0[1]
     dX10 = p1[0] - p0[0]
     dY10 = p1[1] - p0[1]

     s_p = (dY20*dX) - (dX20*dY)
     t_p = (dX10*dY) - (dY10*dX)
     D = (dX10*dY20) - (dY10*dX20)

     if D > 0:
         return (  (s_p >= 0) and (t_p >= 0) and (s_p + t_p) <= D  )
     else:
         return (  (s_p <= 0) and (t_p <= 0) and (s_p + t_p) >= D  )

你可以用:

X_size = 64
Y_size = 64
ax_x = np.arange(X_size).astype(np.float32)
ax_y = np.arange(Y_size).astype(np.float32)
coords=np.meshgrid(ax_x,ax_y)
points_unif = (coords[0].reshape(X_size*Y_size,),coords[1].reshape(X_size*Y_size,))
p_test = np.array([0 , 0])
p0 = np.array([22 , 8]) 
p1 = np.array([12 , 55]) 
p2 = np.array([7 , 19]) 
fig = plt.figure(dpi=300)
for i in range(0,X_size*Y_size):
    p_test[0] = points_unif[0][i]
    p_test[1] = points_unif[1][i]
    if ptInTriang(p_test, p0, p1, p2):
        plt.plot(p_test[0], p_test[1], '.g')
    else:
        plt.plot(p_test[0], p_test[1], '.r')

绘制网格需要花费很多时间,但是该网格在0.0195319652557秒内测试,而开发人员代码为0.0844349861145秒。

最后是代码注释:

# Using barycentric coordintes, any point inside can be described as:
# X = p0.x * r + p1.x * s + p2.x * t
# Y = p0.y * r + p1.y * s + p2.y * t
# with:
# r + s + t = 1  and 0 < r,s,t < 1
# then: r = 1 - s - t
# and then:
# X = p0.x * (1 - s - t) + p1.x * s + p2.x * t
# Y = p0.y * (1 - s - t) + p1.y * s + p2.y * t
#
# X = p0.x + (p1.x-p0.x) * s + (p2.x-p0.x) * t
# Y = p0.y + (p1.y-p0.y) * s + (p2.y-p0.y) * t
#
# X - p0.x = (p1.x-p0.x) * s + (p2.x-p0.x) * t
# Y - p0.y = (p1.y-p0.y) * s + (p2.y-p0.y) * t
#
# we have to solve:
#
# [ X - p0.x ] = [(p1.x-p0.x)   (p2.x-p0.x)] * [ s ]
# [ Y - p0.Y ]   [(p1.y-p0.y)   (p2.y-p0.y)]   [ t ]
#
# ---> b = A*x ; ---> x = A^-1 * b
# 
# [ s ] =   A^-1  * [ X - p0.x ]
# [ t ]             [ Y - p0.Y ]
#
# A^-1 = 1/D * adj(A)
#
# The adjugate of A:
#
# adj(A)   =   [(p2.y-p0.y)   -(p2.x-p0.x)]
#              [-(p1.y-p0.y)   (p1.x-p0.x)]
#
# The determinant of A:
#
# D = (p1.x-p0.x)*(p2.y-p0.y) - (p1.y-p0.y)*(p2.x-p0.x)
#
# Then:
#
# s_p = { (p2.y-p0.y)*(X - p0.x) - (p2.x-p0.x)*(Y - p0.Y) }
# t_p = { (p1.x-p0.x)*(Y - p0.Y) - (p1.y-p0.y)*(X - p0.x) }
#
# s = s_p / D
# t = t_p / D
#
# Recovering r:
#
# r = 1 - (s_p + t_p)/D
#
# Since we only want to know if it is insidem not the barycentric coordinate:
#
# 0 < 1 - (s_p + t_p)/D < 1
# 0 < (s_p + t_p)/D < 1
# 0 < (s_p + t_p) < D
#
# The condition is:
# if D > 0:
#     s_p > 0 and t_p > 0 and (s_p + t_p) < D
# else:
#     s_p < 0 and t_p < 0 and (s_p + t_p) > D
#
# s_p = { dY20*dX - dX20*dY }
# t_p = { dX10*dY - dY10*dX }
# D = dX10*dY20 - dY10*dX20

其中一个最简单的方法来检查是否由三角形的顶点组成的面积 (x1,y1) (x2,y2) (x3,y3)是否为正。

面积可由公式计算:

1/2 [x1(y2–y3) + x2(y3–y1) + x3(y1–y2)]

或者python代码可以写成:

def triangleornot(p1,p2,p3):
    return (1/ 2) [p1[0](p2[1]–p3[1]) + p2[0] (p3[1]–p1[1]) + p3[0] (p1[0]–p2[0])]

我需要在“可控环境”中检查三角形中的点,当你绝对确定三角形是顺时针的时候。所以我拿了Perro Azul的jsfiddle,按照coproc的建议进行了修改。还去掉了多余的0.5和2乘法因为它们互相抵消了。

http://jsfiddle.net/dog_funtom/H7D7g/

var ctx = $("canvas")[0].getContext("2d"); var W = 500; var H = 500; var point = { x: W / 2, y: H / 2 }; var triangle = randomTriangle(); $("canvas").click(function (evt) { point.x = evt.pageX - $(this).offset().left; point.y = evt.pageY - $(this).offset().top; test(); }); $("canvas").dblclick(function (evt) { triangle = randomTriangle(); test(); }); test(); function test() { var result = ptInTriangle(point, triangle.a, triangle.b, triangle.c); var info = "point = (" + point.x + "," + point.y + ")\n"; info += "triangle.a = (" + triangle.a.x + "," + triangle.a.y + ")\n"; info += "triangle.b = (" + triangle.b.x + "," + triangle.b.y + ")\n"; info += "triangle.c = (" + triangle.c.x + "," + triangle.c.y + ")\n"; info += "result = " + (result ? "true" : "false"); $("#result").text(info); render(); } function ptInTriangle(p, p0, p1, p2) { var s = (p0.y * p2.x - p0.x * p2.y + (p2.y - p0.y) * p.x + (p0.x - p2.x) * p.y); var t = (p0.x * p1.y - p0.y * p1.x + (p0.y - p1.y) * p.x + (p1.x - p0.x) * p.y); if (s <= 0 || t <= 0) return false; var A = (-p1.y * p2.x + p0.y * (-p1.x + p2.x) + p0.x * (p1.y - p2.y) + p1.x * p2.y); return (s + t) < A; } function checkClockwise(p0, p1, p2) { var A = (-p1.y * p2.x + p0.y * (-p1.x + p2.x) + p0.x * (p1.y - p2.y) + p1.x * p2.y); return A > 0; } function render() { ctx.fillStyle = "#CCC"; ctx.fillRect(0, 0, 500, 500); drawTriangle(triangle.a, triangle.b, triangle.c); drawPoint(point); } function drawTriangle(p0, p1, p2) { ctx.fillStyle = "#999"; ctx.beginPath(); ctx.moveTo(p0.x, p0.y); ctx.lineTo(p1.x, p1.y); ctx.lineTo(p2.x, p2.y); ctx.closePath(); ctx.fill(); ctx.fillStyle = "#000"; ctx.font = "12px monospace"; ctx.fillText("1", p0.x, p0.y); ctx.fillText("2", p1.x, p1.y); ctx.fillText("3", p2.x, p2.y); } function drawPoint(p) { ctx.fillStyle = "#F00"; ctx.beginPath(); ctx.arc(p.x, p.y, 5, 0, 2 * Math.PI); ctx.fill(); } function rand(min, max) { return Math.floor(Math.random() * (max - min + 1)) + min; } function randomTriangle() { while (true) { var result = { a: { x: rand(0, W), y: rand(0, H) }, b: { x: rand(0, W), y: rand(0, H) }, c: { x: rand(0, W), y: rand(0, H) } }; if (checkClockwise(result.a, result.b, result.c)) return result; } } <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script> <pre>Click: place the point. Double click: random triangle.</pre> <pre id="result"></pre> <canvas width="500" height="500"></canvas>

以下是Unity的等效c#代码:

public static bool IsPointInClockwiseTriangle(Vector2 p, Vector2 p0, Vector2 p1, Vector2 p2)
{
    var s = (p0.y * p2.x - p0.x * p2.y + (p2.y - p0.y) * p.x + (p0.x - p2.x) * p.y);
    var t = (p0.x * p1.y - p0.y * p1.x + (p0.y - p1.y) * p.x + (p1.x - p0.x) * p.y);

    if (s <= 0 || t <= 0)
        return false;

    var A = (-p1.y * p2.x + p0.y * (-p1.x + p2.x) + p0.x * (p1.y - p2.y) + p1.x * p2.y);

    return (s + t) < A;
}

有一些恼人的边条件,即一个点恰好在两个相邻三角形的公共边上。这个点不可能在两个三角形中,也不可能不在两个三角形中。你需要一种任意但一致的方式来分配点。例如,画一条横线穿过这个点。如果这条直线与三角形的另一边在右侧相交,则该点被视为在三角形内。如果交点在左边,则该点在外面。

如果该点所在的直线是水平的,则使用above/below。

如果该点位于多个三角形的公共顶点上,则使用该点与中心点形成的角最小的三角形。

更有趣的是:三个点可以在一条直线上(零度),例如(0,0)-(0,10)-(0,5)。在三角剖分算法中,“耳朵”(0,10)必须被切掉,生成的“三角形”是直线的退化情况。