有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。
当前回答
我同意Andreas Brinck的观点,重心坐标对于这项任务来说非常方便。注意,不需要每次都求解一个方程组:只需计算解析解。使用Andreas的符号,解是:
s = 1/(2*Area)*(p0y*p2x - p0x*p2y + (p2y - p0y)*px + (p0x - p2x)*py);
t = 1/(2*Area)*(p0x*p1y - p0y*p1x + (p0y - p1y)*px + (p1x - p0x)*py);
其中Area是三角形的(带符号的)面积:
Area = 0.5 *(-p1y*p2x + p0y*(-p1x + p2x) + p0x*(p1y - p2y) + p1x*p2y);
只计算st和1-s-t。点p在三角形内当且仅当它们都是正的。
编辑:请注意,上面的区域表达式假设三角形节点编号是逆时针方向的。如果编号是顺时针的,这个表达式将返回一个负的面积(但大小正确)。然而,测试本身(s>0 && t>0 && 1-s-t>0)并不依赖于编号的方向,因为如果三角形节点的方向改变,上面乘以1/(2*Area)的表达式也会改变符号。
编辑2:为了获得更好的计算效率,请参阅下面的coproc注释(其中指出,如果三角形节点的方向(顺时针或逆时针)事先已知,则可以避免在s和t的表达式中除以2*Area)。在Andreas Brinck的回答下面的评论中也可以看到Perro Azul的jsfiddle-code。
其他回答
我需要在“可控环境”中检查三角形中的点,当你绝对确定三角形是顺时针的时候。所以我拿了Perro Azul的jsfiddle,按照coproc的建议进行了修改。还去掉了多余的0.5和2乘法因为它们互相抵消了。
http://jsfiddle.net/dog_funtom/H7D7g/
var ctx = $("canvas")[0].getContext("2d"); var W = 500; var H = 500; var point = { x: W / 2, y: H / 2 }; var triangle = randomTriangle(); $("canvas").click(function (evt) { point.x = evt.pageX - $(this).offset().left; point.y = evt.pageY - $(this).offset().top; test(); }); $("canvas").dblclick(function (evt) { triangle = randomTriangle(); test(); }); test(); function test() { var result = ptInTriangle(point, triangle.a, triangle.b, triangle.c); var info = "point = (" + point.x + "," + point.y + ")\n"; info += "triangle.a = (" + triangle.a.x + "," + triangle.a.y + ")\n"; info += "triangle.b = (" + triangle.b.x + "," + triangle.b.y + ")\n"; info += "triangle.c = (" + triangle.c.x + "," + triangle.c.y + ")\n"; info += "result = " + (result ? "true" : "false"); $("#result").text(info); render(); } function ptInTriangle(p, p0, p1, p2) { var s = (p0.y * p2.x - p0.x * p2.y + (p2.y - p0.y) * p.x + (p0.x - p2.x) * p.y); var t = (p0.x * p1.y - p0.y * p1.x + (p0.y - p1.y) * p.x + (p1.x - p0.x) * p.y); if (s <= 0 || t <= 0) return false; var A = (-p1.y * p2.x + p0.y * (-p1.x + p2.x) + p0.x * (p1.y - p2.y) + p1.x * p2.y); return (s + t) < A; } function checkClockwise(p0, p1, p2) { var A = (-p1.y * p2.x + p0.y * (-p1.x + p2.x) + p0.x * (p1.y - p2.y) + p1.x * p2.y); return A > 0; } function render() { ctx.fillStyle = "#CCC"; ctx.fillRect(0, 0, 500, 500); drawTriangle(triangle.a, triangle.b, triangle.c); drawPoint(point); } function drawTriangle(p0, p1, p2) { ctx.fillStyle = "#999"; ctx.beginPath(); ctx.moveTo(p0.x, p0.y); ctx.lineTo(p1.x, p1.y); ctx.lineTo(p2.x, p2.y); ctx.closePath(); ctx.fill(); ctx.fillStyle = "#000"; ctx.font = "12px monospace"; ctx.fillText("1", p0.x, p0.y); ctx.fillText("2", p1.x, p1.y); ctx.fillText("3", p2.x, p2.y); } function drawPoint(p) { ctx.fillStyle = "#F00"; ctx.beginPath(); ctx.arc(p.x, p.y, 5, 0, 2 * Math.PI); ctx.fill(); } function rand(min, max) { return Math.floor(Math.random() * (max - min + 1)) + min; } function randomTriangle() { while (true) { var result = { a: { x: rand(0, W), y: rand(0, H) }, b: { x: rand(0, W), y: rand(0, H) }, c: { x: rand(0, W), y: rand(0, H) } }; if (checkClockwise(result.a, result.b, result.c)) return result; } } <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script> <pre>Click: place the point. Double click: random triangle.</pre> <pre id="result"></pre> <canvas width="500" height="500"></canvas>
以下是Unity的等效c#代码:
public static bool IsPointInClockwiseTriangle(Vector2 p, Vector2 p0, Vector2 p1, Vector2 p2)
{
var s = (p0.y * p2.x - p0.x * p2.y + (p2.y - p0.y) * p.x + (p0.x - p2.x) * p.y);
var t = (p0.x * p1.y - p0.y * p1.x + (p0.y - p1.y) * p.x + (p1.x - p0.x) * p.y);
if (s <= 0 || t <= 0)
return false;
var A = (-p1.y * p2.x + p0.y * (-p1.x + p2.x) + p0.x * (p1.y - p2.y) + p1.x * p2.y);
return (s + t) < A;
}
有一些恼人的边条件,即一个点恰好在两个相邻三角形的公共边上。这个点不可能在两个三角形中,也不可能不在两个三角形中。你需要一种任意但一致的方式来分配点。例如,画一条横线穿过这个点。如果这条直线与三角形的另一边在右侧相交,则该点被视为在三角形内。如果交点在左边,则该点在外面。
如果该点所在的直线是水平的,则使用above/below。
如果该点位于多个三角形的公共顶点上,则使用该点与中心点形成的角最小的三角形。
更有趣的是:三个点可以在一条直线上(零度),例如(0,0)-(0,10)-(0,5)。在三角剖分算法中,“耳朵”(0,10)必须被切掉,生成的“三角形”是直线的退化情况。
其中一个最简单的方法来检查是否由三角形的顶点组成的面积 (x1,y1) (x2,y2) (x3,y3)是否为正。
面积可由公式计算:
1/2 [x1(y2–y3) + x2(y3–y1) + x3(y1–y2)]
或者python代码可以写成:
def triangleornot(p1,p2,p3):
return (1/ 2) [p1[0](p2[1]–p3[1]) + p2[0] (p3[1]–p1[1]) + p3[0] (p1[0]–p2[0])]
python中的其他函数,比Developer的方法更快(至少对我来说),并受到Cédric Dufour解决方案的启发:
def ptInTriang(p_test, p0, p1, p2):
dX = p_test[0] - p0[0]
dY = p_test[1] - p0[1]
dX20 = p2[0] - p0[0]
dY20 = p2[1] - p0[1]
dX10 = p1[0] - p0[0]
dY10 = p1[1] - p0[1]
s_p = (dY20*dX) - (dX20*dY)
t_p = (dX10*dY) - (dY10*dX)
D = (dX10*dY20) - (dY10*dX20)
if D > 0:
return ( (s_p >= 0) and (t_p >= 0) and (s_p + t_p) <= D )
else:
return ( (s_p <= 0) and (t_p <= 0) and (s_p + t_p) >= D )
你可以用:
X_size = 64
Y_size = 64
ax_x = np.arange(X_size).astype(np.float32)
ax_y = np.arange(Y_size).astype(np.float32)
coords=np.meshgrid(ax_x,ax_y)
points_unif = (coords[0].reshape(X_size*Y_size,),coords[1].reshape(X_size*Y_size,))
p_test = np.array([0 , 0])
p0 = np.array([22 , 8])
p1 = np.array([12 , 55])
p2 = np.array([7 , 19])
fig = plt.figure(dpi=300)
for i in range(0,X_size*Y_size):
p_test[0] = points_unif[0][i]
p_test[1] = points_unif[1][i]
if ptInTriang(p_test, p0, p1, p2):
plt.plot(p_test[0], p_test[1], '.g')
else:
plt.plot(p_test[0], p_test[1], '.r')
绘制网格需要花费很多时间,但是该网格在0.0195319652557秒内测试,而开发人员代码为0.0844349861145秒。
最后是代码注释:
# Using barycentric coordintes, any point inside can be described as:
# X = p0.x * r + p1.x * s + p2.x * t
# Y = p0.y * r + p1.y * s + p2.y * t
# with:
# r + s + t = 1 and 0 < r,s,t < 1
# then: r = 1 - s - t
# and then:
# X = p0.x * (1 - s - t) + p1.x * s + p2.x * t
# Y = p0.y * (1 - s - t) + p1.y * s + p2.y * t
#
# X = p0.x + (p1.x-p0.x) * s + (p2.x-p0.x) * t
# Y = p0.y + (p1.y-p0.y) * s + (p2.y-p0.y) * t
#
# X - p0.x = (p1.x-p0.x) * s + (p2.x-p0.x) * t
# Y - p0.y = (p1.y-p0.y) * s + (p2.y-p0.y) * t
#
# we have to solve:
#
# [ X - p0.x ] = [(p1.x-p0.x) (p2.x-p0.x)] * [ s ]
# [ Y - p0.Y ] [(p1.y-p0.y) (p2.y-p0.y)] [ t ]
#
# ---> b = A*x ; ---> x = A^-1 * b
#
# [ s ] = A^-1 * [ X - p0.x ]
# [ t ] [ Y - p0.Y ]
#
# A^-1 = 1/D * adj(A)
#
# The adjugate of A:
#
# adj(A) = [(p2.y-p0.y) -(p2.x-p0.x)]
# [-(p1.y-p0.y) (p1.x-p0.x)]
#
# The determinant of A:
#
# D = (p1.x-p0.x)*(p2.y-p0.y) - (p1.y-p0.y)*(p2.x-p0.x)
#
# Then:
#
# s_p = { (p2.y-p0.y)*(X - p0.x) - (p2.x-p0.x)*(Y - p0.Y) }
# t_p = { (p1.x-p0.x)*(Y - p0.Y) - (p1.y-p0.y)*(X - p0.x) }
#
# s = s_p / D
# t = t_p / D
#
# Recovering r:
#
# r = 1 - (s_p + t_p)/D
#
# Since we only want to know if it is insidem not the barycentric coordinate:
#
# 0 < 1 - (s_p + t_p)/D < 1
# 0 < (s_p + t_p)/D < 1
# 0 < (s_p + t_p) < D
#
# The condition is:
# if D > 0:
# s_p > 0 and t_p > 0 and (s_p + t_p) < D
# else:
# s_p < 0 and t_p < 0 and (s_p + t_p) > D
#
# s_p = { dY20*dX - dX20*dY }
# t_p = { dX10*dY - dY10*dX }
# D = dX10*dY20 - dY10*dX20
求解如下方程组:
p = p0 + (p1 - p0) * s + (p2 - p0) * t
当0 <= s <= 1和0 <= t <= 1以及s + t <= 1时,点p在三角形内。
S,t和1 - S - t称为点p的重心坐标。
推荐文章
- 找出质数最快的算法是什么?
- 圆线段碰撞检测算法?
- 求有向图中的所有循环
- JavaScript -从当前日期开始获取一周的第一天
- 如何比较两种颜色的相似/不同
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- 哪些是遗传算法/遗传规划解决方案的好例子?
- 如何在O(n)中找到长度为n的无序数组中的第k大元素?
- 对于有符号的数,为什么更喜欢2的补数而不是大小?
- 一个用于膨胀/收缩(抵消,缓冲)多边形的算法
- 圆-矩形碰撞检测(相交)
- 我如何使用Node.js Crypto创建HMAC-SHA1哈希?
- 在ImageView中使用“animated circle”来加载东西
- 如何用动态规划确定最长递增子序列?
- 在c++程序中以编程方式检测字节序