有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。


当前回答

通过使用重心坐标的解析解(由Andreas Brinck指出)和:

不是把乘法分布在括号里的项上 通过存储相同的项来避免多次计算 还原比较(如coproc和Thomas Eding所指出的)

可以最小化“昂贵”操作的数量:

function ptInTriangle(p, p0, p1, p2) {
    var dX = p.x-p2.x;
    var dY = p.y-p2.y;
    var dX21 = p2.x-p1.x;
    var dY12 = p1.y-p2.y;
    var D = dY12*(p0.x-p2.x) + dX21*(p0.y-p2.y);
    var s = dY12*dX + dX21*dY;
    var t = (p2.y-p0.y)*dX + (p0.x-p2.x)*dY;
    if (D<0) return s<=0 && t<=0 && s+t>=D;
    return s>=0 && t>=0 && s+t<=D;
}

代码可以粘贴在Perro Azul jsfiddle中,或者通过点击下面的“运行代码片段”来尝试

var ctx = $("canvas")[0].getContext("2d"); var W = 500; var H = 500; var point = { x: W / 2, y: H / 2 }; var triangle = randomTriangle(); $("canvas").click(function(evt) { point.x = evt.pageX - $(this).offset().left; point.y = evt.pageY - $(this).offset().top; test(); }); $("canvas").dblclick(function(evt) { triangle = randomTriangle(); test(); }); test(); function test() { var result = ptInTriangle(point, triangle.a, triangle.b, triangle.c); var info = "point = (" + point.x + "," + point.y + ")\n"; info += "triangle.a = (" + triangle.a.x + "," + triangle.a.y + ")\n"; info += "triangle.b = (" + triangle.b.x + "," + triangle.b.y + ")\n"; info += "triangle.c = (" + triangle.c.x + "," + triangle.c.y + ")\n"; info += "result = " + (result ? "true" : "false"); $("#result").text(info); render(); } function ptInTriangle(p, p0, p1, p2) { var A = 1/2 * (-p1.y * p2.x + p0.y * (-p1.x + p2.x) + p0.x * (p1.y - p2.y) + p1.x * p2.y); var sign = A < 0 ? -1 : 1; var s = (p0.y * p2.x - p0.x * p2.y + (p2.y - p0.y) * p.x + (p0.x - p2.x) * p.y) * sign; var t = (p0.x * p1.y - p0.y * p1.x + (p0.y - p1.y) * p.x + (p1.x - p0.x) * p.y) * sign; return s > 0 && t > 0 && (s + t) < 2 * A * sign; } function render() { ctx.fillStyle = "#CCC"; ctx.fillRect(0, 0, 500, 500); drawTriangle(triangle.a, triangle.b, triangle.c); drawPoint(point); } function drawTriangle(p0, p1, p2) { ctx.fillStyle = "#999"; ctx.beginPath(); ctx.moveTo(p0.x, p0.y); ctx.lineTo(p1.x, p1.y); ctx.lineTo(p2.x, p2.y); ctx.closePath(); ctx.fill(); ctx.fillStyle = "#000"; ctx.font = "12px monospace"; ctx.fillText("1", p0.x, p0.y); ctx.fillText("2", p1.x, p1.y); ctx.fillText("3", p2.x, p2.y); } function drawPoint(p) { ctx.fillStyle = "#F00"; ctx.beginPath(); ctx.arc(p.x, p.y, 5, 0, 2 * Math.PI); ctx.fill(); } function rand(min, max) { return Math.floor(Math.random() * (max - min + 1)) + min; } function randomTriangle() { return { a: { x: rand(0, W), y: rand(0, H) }, b: { x: rand(0, W), y: rand(0, H) }, c: { x: rand(0, W), y: rand(0, H) } }; } <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script> <pre>Click: place the point. Double click: random triangle.</pre> <pre id="result"></pre> <canvas width="500" height="500"></canvas>

导致:

变量“召回”:30 可变存储:7 补充:4 减法:8 乘法:6 部门:没有 比较:4

这与Kornel Kisielewicz解决方案(25次召回,1次存储,15次减法,6次乘法,5次比较)相比非常好,如果需要顺时针/逆时针检测(它本身需要6次召回,1次加法,2次减法,2次乘法和1次比较,使用解析解行列式,如rhgb所指出的),可能会更好。

其他回答

bool point2Dtriangle(double e,double f, double a,double b,double c, double g,double h,double i, double v, double w){
    /* inputs: e=point.x, f=point.y
               a=triangle.Ax, b=triangle.Bx, c=triangle.Cx 
               g=triangle.Ay, h=triangle.By, i=triangle.Cy */
    v = 1 - (f * (b - c) + h * (c - e) + i * (e - b)) / (g * (b - c) + h * (c - a) + i * (a - b));
    w = (f * (a - b) + g * (b - e) + h * (e - a)) / (g * (b - c) + h * (c - a) + i * (a - b));
    if (*v > -0.0 && *v < 1.0000001 && *w > -0.0 && *w < *v) return true;//is inside
    else return false;//is outside
    return 0;
} 

从质心转换而来的几乎完美的笛卡尔坐标 在*v (x)和*w (y)双精度内导出。 在每种情况下,两个导出双精度对象前面都应该有一个*字符,可能是*v和*w 代码也可以用于四边形的另一个三角形。 特此签名只写三角形abc从顺时针abcd的四边形。

A---B
|..\\.o|  
|....\\.| 
D---C 

o点在ABC三角形内 对于带有第二个三角形的测试,将此函数称为CDA方向,*v=1-*v后的结果应正确;* w = 1 - * w;为了四合院

我在最后一次尝试谷歌和找到这个页面之前写了这段代码,所以我想我应该分享它。它基本上是Kisielewicz答案的优化版本。我也研究了重心法,但从维基百科的文章来看,我很难看出它是如何更有效的(我猜有一些更深层次的等价性)。不管怎样,这个算法的优点是不用除法;一个潜在的问题是边缘检测的行为取决于方向。

bool intpoint_inside_trigon(intPoint s, intPoint a, intPoint b, intPoint c)
{
    int as_x = s.x - a.x;
    int as_y = s.y - a.y;

    bool s_ab = (b.x - a.x) * as_y - (b.y - a.y) * as_x > 0;

    if ((c.x - a.x) * as_y - (c.y - a.y) * as_x > 0 == s_ab) 
        return false;
    if ((c.x - b.x) * (s.y - b.y) - (c.y - b.y)*(s.x - b.x) > 0 != s_ab) 
        return false;
    return true;
}

换句话说,思想是这样的:点s是在直线AB和直线AC的左边还是右边?如果是真的,它就不可能在里面。如果为假,则至少在“锥”内满足条件。现在,因为我们知道三角形(三角形)内的一个点必须与BC(以及CA)在AB的同一侧,我们检查它们是否不同。如果有,s就不可能在里面,否则s一定在里面。

计算中的一些关键字是线半平面和行列式(2x2叉乘)。也许一个更有教学意义的方法是将它看作是一个在AB、BC和CA的同一侧(左或右)的点。然而,上面的方法似乎更适合进行一些优化。

我同意Andreas Brinck的观点,重心坐标对于这项任务来说非常方便。注意,不需要每次都求解一个方程组:只需计算解析解。使用Andreas的符号,解是:

s = 1/(2*Area)*(p0y*p2x - p0x*p2y + (p2y - p0y)*px + (p0x - p2x)*py);
t = 1/(2*Area)*(p0x*p1y - p0y*p1x + (p0y - p1y)*px + (p1x - p0x)*py);

其中Area是三角形的(带符号的)面积:

Area = 0.5 *(-p1y*p2x + p0y*(-p1x + p2x) + p0x*(p1y - p2y) + p1x*p2y);

只计算st和1-s-t。点p在三角形内当且仅当它们都是正的。

编辑:请注意,上面的区域表达式假设三角形节点编号是逆时针方向的。如果编号是顺时针的,这个表达式将返回一个负的面积(但大小正确)。然而,测试本身(s>0 && t>0 && 1-s-t>0)并不依赖于编号的方向,因为如果三角形节点的方向改变,上面乘以1/(2*Area)的表达式也会改变符号。

编辑2:为了获得更好的计算效率,请参阅下面的coproc注释(其中指出,如果三角形节点的方向(顺时针或逆时针)事先已知,则可以避免在s和t的表达式中除以2*Area)。在Andreas Brinck的回答下面的评论中也可以看到Perro Azul的jsfiddle-code。

老实说,这就像Simon P Steven的回答一样简单,但是用这种方法,你无法控制你是否想要包含三角形边缘上的点。

我的方法有点不同,但非常基本。考虑下面的三角形;

为了在三角形中有这个点我们必须满足三个条件

ACE角(绿色)应小于ACB角(红色) ECB角(蓝色)应小于ACB角(红色) 当点E和点C的x和y值应用于|AB|直线方程时,点E和点C的符号应该相同。

在此方法中,您可以完全控制单独包含或排除边缘上的点。所以你可以检查一个点是否在三角形中,例如,只包括|AC|边。

所以我的JavaScript解决方案是这样的;

function isInTriangle(t,p){ function isInBorder(a,b,c,p){ var m = (a.y - b.y) / (a.x - b.x); // calculate the slope return Math.sign(p.y - m*p.x + m*a.x - a.y) === Math.sign(c.y - m*c.x + m*a.x - a.y); } function findAngle(a,b,c){ // calculate the C angle from 3 points. var ca = Math.hypot(c.x-a.x, c.y-a.y), // ca edge length cb = Math.hypot(c.x-b.x, c.y-b.y), // cb edge length ab = Math.hypot(a.x-b.x, a.y-b.y); // ab edge length return Math.acos((ca*ca + cb*cb - ab*ab) / (2*ca*cb)); // return the C angle } var pas = t.slice(1) .map(tp => findAngle(p,tp,t[0])), // find the angle between (p,t[0]) with (t[1],t[0]) & (t[2],t[0]) ta = findAngle(t[1],t[2],t[0]); return pas[0] < ta && pas[1] < ta && isInBorder(t[1],t[2],t[0],p); } var triangle = [{x:3, y:4},{x:10, y:8},{x:6, y:10}], point1 = {x:3, y:9}, point2 = {x:7, y:9}; console.log(isInTriangle(triangle,point1)); console.log(isInTriangle(triangle,point2));

通过使用重心坐标的解析解(由Andreas Brinck指出)和:

不是把乘法分布在括号里的项上 通过存储相同的项来避免多次计算 还原比较(如coproc和Thomas Eding所指出的)

可以最小化“昂贵”操作的数量:

function ptInTriangle(p, p0, p1, p2) {
    var dX = p.x-p2.x;
    var dY = p.y-p2.y;
    var dX21 = p2.x-p1.x;
    var dY12 = p1.y-p2.y;
    var D = dY12*(p0.x-p2.x) + dX21*(p0.y-p2.y);
    var s = dY12*dX + dX21*dY;
    var t = (p2.y-p0.y)*dX + (p0.x-p2.x)*dY;
    if (D<0) return s<=0 && t<=0 && s+t>=D;
    return s>=0 && t>=0 && s+t<=D;
}

代码可以粘贴在Perro Azul jsfiddle中,或者通过点击下面的“运行代码片段”来尝试

var ctx = $("canvas")[0].getContext("2d"); var W = 500; var H = 500; var point = { x: W / 2, y: H / 2 }; var triangle = randomTriangle(); $("canvas").click(function(evt) { point.x = evt.pageX - $(this).offset().left; point.y = evt.pageY - $(this).offset().top; test(); }); $("canvas").dblclick(function(evt) { triangle = randomTriangle(); test(); }); test(); function test() { var result = ptInTriangle(point, triangle.a, triangle.b, triangle.c); var info = "point = (" + point.x + "," + point.y + ")\n"; info += "triangle.a = (" + triangle.a.x + "," + triangle.a.y + ")\n"; info += "triangle.b = (" + triangle.b.x + "," + triangle.b.y + ")\n"; info += "triangle.c = (" + triangle.c.x + "," + triangle.c.y + ")\n"; info += "result = " + (result ? "true" : "false"); $("#result").text(info); render(); } function ptInTriangle(p, p0, p1, p2) { var A = 1/2 * (-p1.y * p2.x + p0.y * (-p1.x + p2.x) + p0.x * (p1.y - p2.y) + p1.x * p2.y); var sign = A < 0 ? -1 : 1; var s = (p0.y * p2.x - p0.x * p2.y + (p2.y - p0.y) * p.x + (p0.x - p2.x) * p.y) * sign; var t = (p0.x * p1.y - p0.y * p1.x + (p0.y - p1.y) * p.x + (p1.x - p0.x) * p.y) * sign; return s > 0 && t > 0 && (s + t) < 2 * A * sign; } function render() { ctx.fillStyle = "#CCC"; ctx.fillRect(0, 0, 500, 500); drawTriangle(triangle.a, triangle.b, triangle.c); drawPoint(point); } function drawTriangle(p0, p1, p2) { ctx.fillStyle = "#999"; ctx.beginPath(); ctx.moveTo(p0.x, p0.y); ctx.lineTo(p1.x, p1.y); ctx.lineTo(p2.x, p2.y); ctx.closePath(); ctx.fill(); ctx.fillStyle = "#000"; ctx.font = "12px monospace"; ctx.fillText("1", p0.x, p0.y); ctx.fillText("2", p1.x, p1.y); ctx.fillText("3", p2.x, p2.y); } function drawPoint(p) { ctx.fillStyle = "#F00"; ctx.beginPath(); ctx.arc(p.x, p.y, 5, 0, 2 * Math.PI); ctx.fill(); } function rand(min, max) { return Math.floor(Math.random() * (max - min + 1)) + min; } function randomTriangle() { return { a: { x: rand(0, W), y: rand(0, H) }, b: { x: rand(0, W), y: rand(0, H) }, c: { x: rand(0, W), y: rand(0, H) } }; } <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script> <pre>Click: place the point. Double click: random triangle.</pre> <pre id="result"></pre> <canvas width="500" height="500"></canvas>

导致:

变量“召回”:30 可变存储:7 补充:4 减法:8 乘法:6 部门:没有 比较:4

这与Kornel Kisielewicz解决方案(25次召回,1次存储,15次减法,6次乘法,5次比较)相比非常好,如果需要顺时针/逆时针检测(它本身需要6次召回,1次加法,2次减法,2次乘法和1次比较,使用解析解行列式,如rhgb所指出的),可能会更好。