有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。


当前回答

通过使用重心坐标的解析解(由Andreas Brinck指出)和:

不是把乘法分布在括号里的项上 通过存储相同的项来避免多次计算 还原比较(如coproc和Thomas Eding所指出的)

可以最小化“昂贵”操作的数量:

function ptInTriangle(p, p0, p1, p2) {
    var dX = p.x-p2.x;
    var dY = p.y-p2.y;
    var dX21 = p2.x-p1.x;
    var dY12 = p1.y-p2.y;
    var D = dY12*(p0.x-p2.x) + dX21*(p0.y-p2.y);
    var s = dY12*dX + dX21*dY;
    var t = (p2.y-p0.y)*dX + (p0.x-p2.x)*dY;
    if (D<0) return s<=0 && t<=0 && s+t>=D;
    return s>=0 && t>=0 && s+t<=D;
}

代码可以粘贴在Perro Azul jsfiddle中,或者通过点击下面的“运行代码片段”来尝试

var ctx = $("canvas")[0].getContext("2d"); var W = 500; var H = 500; var point = { x: W / 2, y: H / 2 }; var triangle = randomTriangle(); $("canvas").click(function(evt) { point.x = evt.pageX - $(this).offset().left; point.y = evt.pageY - $(this).offset().top; test(); }); $("canvas").dblclick(function(evt) { triangle = randomTriangle(); test(); }); test(); function test() { var result = ptInTriangle(point, triangle.a, triangle.b, triangle.c); var info = "point = (" + point.x + "," + point.y + ")\n"; info += "triangle.a = (" + triangle.a.x + "," + triangle.a.y + ")\n"; info += "triangle.b = (" + triangle.b.x + "," + triangle.b.y + ")\n"; info += "triangle.c = (" + triangle.c.x + "," + triangle.c.y + ")\n"; info += "result = " + (result ? "true" : "false"); $("#result").text(info); render(); } function ptInTriangle(p, p0, p1, p2) { var A = 1/2 * (-p1.y * p2.x + p0.y * (-p1.x + p2.x) + p0.x * (p1.y - p2.y) + p1.x * p2.y); var sign = A < 0 ? -1 : 1; var s = (p0.y * p2.x - p0.x * p2.y + (p2.y - p0.y) * p.x + (p0.x - p2.x) * p.y) * sign; var t = (p0.x * p1.y - p0.y * p1.x + (p0.y - p1.y) * p.x + (p1.x - p0.x) * p.y) * sign; return s > 0 && t > 0 && (s + t) < 2 * A * sign; } function render() { ctx.fillStyle = "#CCC"; ctx.fillRect(0, 0, 500, 500); drawTriangle(triangle.a, triangle.b, triangle.c); drawPoint(point); } function drawTriangle(p0, p1, p2) { ctx.fillStyle = "#999"; ctx.beginPath(); ctx.moveTo(p0.x, p0.y); ctx.lineTo(p1.x, p1.y); ctx.lineTo(p2.x, p2.y); ctx.closePath(); ctx.fill(); ctx.fillStyle = "#000"; ctx.font = "12px monospace"; ctx.fillText("1", p0.x, p0.y); ctx.fillText("2", p1.x, p1.y); ctx.fillText("3", p2.x, p2.y); } function drawPoint(p) { ctx.fillStyle = "#F00"; ctx.beginPath(); ctx.arc(p.x, p.y, 5, 0, 2 * Math.PI); ctx.fill(); } function rand(min, max) { return Math.floor(Math.random() * (max - min + 1)) + min; } function randomTriangle() { return { a: { x: rand(0, W), y: rand(0, H) }, b: { x: rand(0, W), y: rand(0, H) }, c: { x: rand(0, W), y: rand(0, H) } }; } <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script> <pre>Click: place the point. Double click: random triangle.</pre> <pre id="result"></pre> <canvas width="500" height="500"></canvas>

导致:

变量“召回”:30 可变存储:7 补充:4 减法:8 乘法:6 部门:没有 比较:4

这与Kornel Kisielewicz解决方案(25次召回,1次存储,15次减法,6次乘法,5次比较)相比非常好,如果需要顺时针/逆时针检测(它本身需要6次召回,1次加法,2次减法,2次乘法和1次比较,使用解析解行列式,如rhgb所指出的),可能会更好。

其他回答

我同意Andreas Brinck的观点,重心坐标对于这项任务来说非常方便。注意,不需要每次都求解一个方程组:只需计算解析解。使用Andreas的符号,解是:

s = 1/(2*Area)*(p0y*p2x - p0x*p2y + (p2y - p0y)*px + (p0x - p2x)*py);
t = 1/(2*Area)*(p0x*p1y - p0y*p1x + (p0y - p1y)*px + (p1x - p0x)*py);

其中Area是三角形的(带符号的)面积:

Area = 0.5 *(-p1y*p2x + p0y*(-p1x + p2x) + p0x*(p1y - p2y) + p1x*p2y);

只计算st和1-s-t。点p在三角形内当且仅当它们都是正的。

编辑:请注意,上面的区域表达式假设三角形节点编号是逆时针方向的。如果编号是顺时针的,这个表达式将返回一个负的面积(但大小正确)。然而,测试本身(s>0 && t>0 && 1-s-t>0)并不依赖于编号的方向,因为如果三角形节点的方向改变,上面乘以1/(2*Area)的表达式也会改变符号。

编辑2:为了获得更好的计算效率,请参阅下面的coproc注释(其中指出,如果三角形节点的方向(顺时针或逆时针)事先已知,则可以避免在s和t的表达式中除以2*Area)。在Andreas Brinck的回答下面的评论中也可以看到Perro Azul的jsfiddle-code。

下面是一个高效的Python实现:

def PointInsideTriangle2(pt,tri):
    '''checks if point pt(2) is inside triangle tri(3x2). @Developer'''
    a = 1/(-tri[1,1]*tri[2,0]+tri[0,1]*(-tri[1,0]+tri[2,0])+ \
        tri[0,0]*(tri[1,1]-tri[2,1])+tri[1,0]*tri[2,1])
    s = a*(tri[2,0]*tri[0,1]-tri[0,0]*tri[2,1]+(tri[2,1]-tri[0,1])*pt[0]+ \
        (tri[0,0]-tri[2,0])*pt[1])
    if s<0: return False
    else: t = a*(tri[0,0]*tri[1,1]-tri[1,0]*tri[0,1]+(tri[0,1]-tri[1,1])*pt[0]+ \
              (tri[1,0]-tri[0,0])*pt[1])
    return ((t>0) and (1-s-t>0))

和一个示例输出:

python中的其他函数,比Developer的方法更快(至少对我来说),并受到Cédric Dufour解决方案的启发:

def ptInTriang(p_test, p0, p1, p2):       
     dX = p_test[0] - p0[0]
     dY = p_test[1] - p0[1]
     dX20 = p2[0] - p0[0]
     dY20 = p2[1] - p0[1]
     dX10 = p1[0] - p0[0]
     dY10 = p1[1] - p0[1]

     s_p = (dY20*dX) - (dX20*dY)
     t_p = (dX10*dY) - (dY10*dX)
     D = (dX10*dY20) - (dY10*dX20)

     if D > 0:
         return (  (s_p >= 0) and (t_p >= 0) and (s_p + t_p) <= D  )
     else:
         return (  (s_p <= 0) and (t_p <= 0) and (s_p + t_p) >= D  )

你可以用:

X_size = 64
Y_size = 64
ax_x = np.arange(X_size).astype(np.float32)
ax_y = np.arange(Y_size).astype(np.float32)
coords=np.meshgrid(ax_x,ax_y)
points_unif = (coords[0].reshape(X_size*Y_size,),coords[1].reshape(X_size*Y_size,))
p_test = np.array([0 , 0])
p0 = np.array([22 , 8]) 
p1 = np.array([12 , 55]) 
p2 = np.array([7 , 19]) 
fig = plt.figure(dpi=300)
for i in range(0,X_size*Y_size):
    p_test[0] = points_unif[0][i]
    p_test[1] = points_unif[1][i]
    if ptInTriang(p_test, p0, p1, p2):
        plt.plot(p_test[0], p_test[1], '.g')
    else:
        plt.plot(p_test[0], p_test[1], '.r')

绘制网格需要花费很多时间,但是该网格在0.0195319652557秒内测试,而开发人员代码为0.0844349861145秒。

最后是代码注释:

# Using barycentric coordintes, any point inside can be described as:
# X = p0.x * r + p1.x * s + p2.x * t
# Y = p0.y * r + p1.y * s + p2.y * t
# with:
# r + s + t = 1  and 0 < r,s,t < 1
# then: r = 1 - s - t
# and then:
# X = p0.x * (1 - s - t) + p1.x * s + p2.x * t
# Y = p0.y * (1 - s - t) + p1.y * s + p2.y * t
#
# X = p0.x + (p1.x-p0.x) * s + (p2.x-p0.x) * t
# Y = p0.y + (p1.y-p0.y) * s + (p2.y-p0.y) * t
#
# X - p0.x = (p1.x-p0.x) * s + (p2.x-p0.x) * t
# Y - p0.y = (p1.y-p0.y) * s + (p2.y-p0.y) * t
#
# we have to solve:
#
# [ X - p0.x ] = [(p1.x-p0.x)   (p2.x-p0.x)] * [ s ]
# [ Y - p0.Y ]   [(p1.y-p0.y)   (p2.y-p0.y)]   [ t ]
#
# ---> b = A*x ; ---> x = A^-1 * b
# 
# [ s ] =   A^-1  * [ X - p0.x ]
# [ t ]             [ Y - p0.Y ]
#
# A^-1 = 1/D * adj(A)
#
# The adjugate of A:
#
# adj(A)   =   [(p2.y-p0.y)   -(p2.x-p0.x)]
#              [-(p1.y-p0.y)   (p1.x-p0.x)]
#
# The determinant of A:
#
# D = (p1.x-p0.x)*(p2.y-p0.y) - (p1.y-p0.y)*(p2.x-p0.x)
#
# Then:
#
# s_p = { (p2.y-p0.y)*(X - p0.x) - (p2.x-p0.x)*(Y - p0.Y) }
# t_p = { (p1.x-p0.x)*(Y - p0.Y) - (p1.y-p0.y)*(X - p0.x) }
#
# s = s_p / D
# t = t_p / D
#
# Recovering r:
#
# r = 1 - (s_p + t_p)/D
#
# Since we only want to know if it is insidem not the barycentric coordinate:
#
# 0 < 1 - (s_p + t_p)/D < 1
# 0 < (s_p + t_p)/D < 1
# 0 < (s_p + t_p) < D
#
# The condition is:
# if D > 0:
#     s_p > 0 and t_p > 0 and (s_p + t_p) < D
# else:
#     s_p < 0 and t_p < 0 and (s_p + t_p) > D
#
# s_p = { dY20*dX - dX20*dY }
# t_p = { dX10*dY - dY10*dX }
# D = dX10*dY20 - dY10*dX20

通过使用重心坐标的解析解(由Andreas Brinck指出)和:

不是把乘法分布在括号里的项上 通过存储相同的项来避免多次计算 还原比较(如coproc和Thomas Eding所指出的)

可以最小化“昂贵”操作的数量:

function ptInTriangle(p, p0, p1, p2) {
    var dX = p.x-p2.x;
    var dY = p.y-p2.y;
    var dX21 = p2.x-p1.x;
    var dY12 = p1.y-p2.y;
    var D = dY12*(p0.x-p2.x) + dX21*(p0.y-p2.y);
    var s = dY12*dX + dX21*dY;
    var t = (p2.y-p0.y)*dX + (p0.x-p2.x)*dY;
    if (D<0) return s<=0 && t<=0 && s+t>=D;
    return s>=0 && t>=0 && s+t<=D;
}

代码可以粘贴在Perro Azul jsfiddle中,或者通过点击下面的“运行代码片段”来尝试

var ctx = $("canvas")[0].getContext("2d"); var W = 500; var H = 500; var point = { x: W / 2, y: H / 2 }; var triangle = randomTriangle(); $("canvas").click(function(evt) { point.x = evt.pageX - $(this).offset().left; point.y = evt.pageY - $(this).offset().top; test(); }); $("canvas").dblclick(function(evt) { triangle = randomTriangle(); test(); }); test(); function test() { var result = ptInTriangle(point, triangle.a, triangle.b, triangle.c); var info = "point = (" + point.x + "," + point.y + ")\n"; info += "triangle.a = (" + triangle.a.x + "," + triangle.a.y + ")\n"; info += "triangle.b = (" + triangle.b.x + "," + triangle.b.y + ")\n"; info += "triangle.c = (" + triangle.c.x + "," + triangle.c.y + ")\n"; info += "result = " + (result ? "true" : "false"); $("#result").text(info); render(); } function ptInTriangle(p, p0, p1, p2) { var A = 1/2 * (-p1.y * p2.x + p0.y * (-p1.x + p2.x) + p0.x * (p1.y - p2.y) + p1.x * p2.y); var sign = A < 0 ? -1 : 1; var s = (p0.y * p2.x - p0.x * p2.y + (p2.y - p0.y) * p.x + (p0.x - p2.x) * p.y) * sign; var t = (p0.x * p1.y - p0.y * p1.x + (p0.y - p1.y) * p.x + (p1.x - p0.x) * p.y) * sign; return s > 0 && t > 0 && (s + t) < 2 * A * sign; } function render() { ctx.fillStyle = "#CCC"; ctx.fillRect(0, 0, 500, 500); drawTriangle(triangle.a, triangle.b, triangle.c); drawPoint(point); } function drawTriangle(p0, p1, p2) { ctx.fillStyle = "#999"; ctx.beginPath(); ctx.moveTo(p0.x, p0.y); ctx.lineTo(p1.x, p1.y); ctx.lineTo(p2.x, p2.y); ctx.closePath(); ctx.fill(); ctx.fillStyle = "#000"; ctx.font = "12px monospace"; ctx.fillText("1", p0.x, p0.y); ctx.fillText("2", p1.x, p1.y); ctx.fillText("3", p2.x, p2.y); } function drawPoint(p) { ctx.fillStyle = "#F00"; ctx.beginPath(); ctx.arc(p.x, p.y, 5, 0, 2 * Math.PI); ctx.fill(); } function rand(min, max) { return Math.floor(Math.random() * (max - min + 1)) + min; } function randomTriangle() { return { a: { x: rand(0, W), y: rand(0, H) }, b: { x: rand(0, W), y: rand(0, H) }, c: { x: rand(0, W), y: rand(0, H) } }; } <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script> <pre>Click: place the point. Double click: random triangle.</pre> <pre id="result"></pre> <canvas width="500" height="500"></canvas>

导致:

变量“召回”:30 可变存储:7 补充:4 减法:8 乘法:6 部门:没有 比较:4

这与Kornel Kisielewicz解决方案(25次召回,1次存储,15次减法,6次乘法,5次比较)相比非常好,如果需要顺时针/逆时针检测(它本身需要6次召回,1次加法,2次减法,2次乘法和1次比较,使用解析解行列式,如rhgb所指出的),可能会更好。

一般来说,最简单(也是最优)的算法是检查由边创建的半平面的哪一边是点。

以下是关于GameDev的一些高质量信息,包括性能问题。

这里有一些代码让你开始:

float sign (fPoint p1, fPoint p2, fPoint p3)
{
    return (p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y);
}

bool PointInTriangle (fPoint pt, fPoint v1, fPoint v2, fPoint v3)
{
    float d1, d2, d3;
    bool has_neg, has_pos;

    d1 = sign(pt, v1, v2);
    d2 = sign(pt, v2, v3);
    d3 = sign(pt, v3, v1);

    has_neg = (d1 < 0) || (d2 < 0) || (d3 < 0);
    has_pos = (d1 > 0) || (d2 > 0) || (d3 > 0);

    return !(has_neg && has_pos);
}