有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。
当前回答
有一些恼人的边条件,即一个点恰好在两个相邻三角形的公共边上。这个点不可能在两个三角形中,也不可能不在两个三角形中。你需要一种任意但一致的方式来分配点。例如,画一条横线穿过这个点。如果这条直线与三角形的另一边在右侧相交,则该点被视为在三角形内。如果交点在左边,则该点在外面。
如果该点所在的直线是水平的,则使用above/below。
如果该点位于多个三角形的公共顶点上,则使用该点与中心点形成的角最小的三角形。
更有趣的是:三个点可以在一条直线上(零度),例如(0,0)-(0,10)-(0,5)。在三角剖分算法中,“耳朵”(0,10)必须被切掉,生成的“三角形”是直线的退化情况。
其他回答
有一些恼人的边条件,即一个点恰好在两个相邻三角形的公共边上。这个点不可能在两个三角形中,也不可能不在两个三角形中。你需要一种任意但一致的方式来分配点。例如,画一条横线穿过这个点。如果这条直线与三角形的另一边在右侧相交,则该点被视为在三角形内。如果交点在左边,则该点在外面。
如果该点所在的直线是水平的,则使用above/below。
如果该点位于多个三角形的公共顶点上,则使用该点与中心点形成的角最小的三角形。
更有趣的是:三个点可以在一条直线上(零度),例如(0,0)-(0,10)-(0,5)。在三角剖分算法中,“耳朵”(0,10)必须被切掉,生成的“三角形”是直线的退化情况。
一般来说,最简单(也是最优)的算法是检查由边创建的半平面的哪一边是点。
以下是关于GameDev的一些高质量信息,包括性能问题。
这里有一些代码让你开始:
float sign (fPoint p1, fPoint p2, fPoint p3)
{
return (p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y);
}
bool PointInTriangle (fPoint pt, fPoint v1, fPoint v2, fPoint v3)
{
float d1, d2, d3;
bool has_neg, has_pos;
d1 = sign(pt, v1, v2);
d2 = sign(pt, v2, v3);
d3 = sign(pt, v3, v1);
has_neg = (d1 < 0) || (d2 < 0) || (d3 < 0);
has_pos = (d1 > 0) || (d2 > 0) || (d3 > 0);
return !(has_neg && has_pos);
}
通过使用重心坐标的解析解(由Andreas Brinck指出)和:
不是把乘法分布在括号里的项上 通过存储相同的项来避免多次计算 还原比较(如coproc和Thomas Eding所指出的)
可以最小化“昂贵”操作的数量:
function ptInTriangle(p, p0, p1, p2) {
var dX = p.x-p2.x;
var dY = p.y-p2.y;
var dX21 = p2.x-p1.x;
var dY12 = p1.y-p2.y;
var D = dY12*(p0.x-p2.x) + dX21*(p0.y-p2.y);
var s = dY12*dX + dX21*dY;
var t = (p2.y-p0.y)*dX + (p0.x-p2.x)*dY;
if (D<0) return s<=0 && t<=0 && s+t>=D;
return s>=0 && t>=0 && s+t<=D;
}
代码可以粘贴在Perro Azul jsfiddle中,或者通过点击下面的“运行代码片段”来尝试
var ctx = $("canvas")[0].getContext("2d"); var W = 500; var H = 500; var point = { x: W / 2, y: H / 2 }; var triangle = randomTriangle(); $("canvas").click(function(evt) { point.x = evt.pageX - $(this).offset().left; point.y = evt.pageY - $(this).offset().top; test(); }); $("canvas").dblclick(function(evt) { triangle = randomTriangle(); test(); }); test(); function test() { var result = ptInTriangle(point, triangle.a, triangle.b, triangle.c); var info = "point = (" + point.x + "," + point.y + ")\n"; info += "triangle.a = (" + triangle.a.x + "," + triangle.a.y + ")\n"; info += "triangle.b = (" + triangle.b.x + "," + triangle.b.y + ")\n"; info += "triangle.c = (" + triangle.c.x + "," + triangle.c.y + ")\n"; info += "result = " + (result ? "true" : "false"); $("#result").text(info); render(); } function ptInTriangle(p, p0, p1, p2) { var A = 1/2 * (-p1.y * p2.x + p0.y * (-p1.x + p2.x) + p0.x * (p1.y - p2.y) + p1.x * p2.y); var sign = A < 0 ? -1 : 1; var s = (p0.y * p2.x - p0.x * p2.y + (p2.y - p0.y) * p.x + (p0.x - p2.x) * p.y) * sign; var t = (p0.x * p1.y - p0.y * p1.x + (p0.y - p1.y) * p.x + (p1.x - p0.x) * p.y) * sign; return s > 0 && t > 0 && (s + t) < 2 * A * sign; } function render() { ctx.fillStyle = "#CCC"; ctx.fillRect(0, 0, 500, 500); drawTriangle(triangle.a, triangle.b, triangle.c); drawPoint(point); } function drawTriangle(p0, p1, p2) { ctx.fillStyle = "#999"; ctx.beginPath(); ctx.moveTo(p0.x, p0.y); ctx.lineTo(p1.x, p1.y); ctx.lineTo(p2.x, p2.y); ctx.closePath(); ctx.fill(); ctx.fillStyle = "#000"; ctx.font = "12px monospace"; ctx.fillText("1", p0.x, p0.y); ctx.fillText("2", p1.x, p1.y); ctx.fillText("3", p2.x, p2.y); } function drawPoint(p) { ctx.fillStyle = "#F00"; ctx.beginPath(); ctx.arc(p.x, p.y, 5, 0, 2 * Math.PI); ctx.fill(); } function rand(min, max) { return Math.floor(Math.random() * (max - min + 1)) + min; } function randomTriangle() { return { a: { x: rand(0, W), y: rand(0, H) }, b: { x: rand(0, W), y: rand(0, H) }, c: { x: rand(0, W), y: rand(0, H) } }; } <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script> <pre>Click: place the point. Double click: random triangle.</pre> <pre id="result"></pre> <canvas width="500" height="500"></canvas>
导致:
变量“召回”:30 可变存储:7 补充:4 减法:8 乘法:6 部门:没有 比较:4
这与Kornel Kisielewicz解决方案(25次召回,1次存储,15次减法,6次乘法,5次比较)相比非常好,如果需要顺时针/逆时针检测(它本身需要6次召回,1次加法,2次减法,2次乘法和1次比较,使用解析解行列式,如rhgb所指出的),可能会更好。
最简单的方法,适用于所有类型的三角形,就是确定P点A点B点C点的角。如果任何一个角大于180.0度,那么它在外面,如果是180.0度,那么它在圆周上,如果acos欺骗了你,小于180.0度,那么它在里面。看一看理解http://math-physics-psychology.blogspot.hu/2015/01/earlish-determination-that-point-is.html
一个简单的方法是:
找出连接 分别指向三角形的三个点 顶点和夹角之和 这些向量。如果它们的和 角度是2*那么点是 在三角形里面。
两个解释替代方案的好网站是:
黑卒和沃尔夫勒姆