有没有一种简单的方法来确定一个点是否在三角形内?是2D的,不是3D的。
当前回答
一般来说,最简单(也是最优)的算法是检查由边创建的半平面的哪一边是点。
以下是关于GameDev的一些高质量信息,包括性能问题。
这里有一些代码让你开始:
float sign (fPoint p1, fPoint p2, fPoint p3)
{
return (p1.x - p3.x) * (p2.y - p3.y) - (p2.x - p3.x) * (p1.y - p3.y);
}
bool PointInTriangle (fPoint pt, fPoint v1, fPoint v2, fPoint v3)
{
float d1, d2, d3;
bool has_neg, has_pos;
d1 = sign(pt, v1, v2);
d2 = sign(pt, v2, v3);
d3 = sign(pt, v3, v1);
has_neg = (d1 < 0) || (d2 < 0) || (d3 < 0);
has_pos = (d1 > 0) || (d2 > 0) || (d3 > 0);
return !(has_neg && has_pos);
}
其他回答
我在最后一次尝试谷歌和找到这个页面之前写了这段代码,所以我想我应该分享它。它基本上是Kisielewicz答案的优化版本。我也研究了重心法,但从维基百科的文章来看,我很难看出它是如何更有效的(我猜有一些更深层次的等价性)。不管怎样,这个算法的优点是不用除法;一个潜在的问题是边缘检测的行为取决于方向。
bool intpoint_inside_trigon(intPoint s, intPoint a, intPoint b, intPoint c)
{
int as_x = s.x - a.x;
int as_y = s.y - a.y;
bool s_ab = (b.x - a.x) * as_y - (b.y - a.y) * as_x > 0;
if ((c.x - a.x) * as_y - (c.y - a.y) * as_x > 0 == s_ab)
return false;
if ((c.x - b.x) * (s.y - b.y) - (c.y - b.y)*(s.x - b.x) > 0 != s_ab)
return false;
return true;
}
换句话说,思想是这样的:点s是在直线AB和直线AC的左边还是右边?如果是真的,它就不可能在里面。如果为假,则至少在“锥”内满足条件。现在,因为我们知道三角形(三角形)内的一个点必须与BC(以及CA)在AB的同一侧,我们检查它们是否不同。如果有,s就不可能在里面,否则s一定在里面。
计算中的一些关键字是线半平面和行列式(2x2叉乘)。也许一个更有教学意义的方法是将它看作是一个在AB、BC和CA的同一侧(左或右)的点。然而,上面的方法似乎更适合进行一些优化。
其中一个最简单的方法来检查是否由三角形的顶点组成的面积 (x1,y1) (x2,y2) (x3,y3)是否为正。
面积可由公式计算:
1/2 [x1(y2–y3) + x2(y3–y1) + x3(y1–y2)]
或者python代码可以写成:
def triangleornot(p1,p2,p3):
return (1/ 2) [p1[0](p2[1]–p3[1]) + p2[0] (p3[1]–p1[1]) + p3[0] (p1[0]–p2[0])]
bool isInside( float x, float y, float x1, float y1, float x2, float y2, float x3, float y3 ) {
float l1 = (x-x1)*(y3-y1) - (x3-x1)*(y-y1),
l2 = (x-x2)*(y1-y2) - (x1-x2)*(y-y2),
l3 = (x-x3)*(y2-y3) - (x2-x3)*(y-y3);
return (l1>0 && l2>0 && l3>0) || (l1<0 && l2<0 && l3<0);
}
没有比这更有效率的了!三角形的每边都可以有独立的位置和方向,因此需要进行l1、l2和l3三个计算,每个计算需要进行2次乘法。一旦l1, l2和l3是已知的,结果只是一些基本的比较和布尔运算。
bool point2Dtriangle(double e,double f, double a,double b,double c, double g,double h,double i, double v, double w){
/* inputs: e=point.x, f=point.y
a=triangle.Ax, b=triangle.Bx, c=triangle.Cx
g=triangle.Ay, h=triangle.By, i=triangle.Cy */
v = 1 - (f * (b - c) + h * (c - e) + i * (e - b)) / (g * (b - c) + h * (c - a) + i * (a - b));
w = (f * (a - b) + g * (b - e) + h * (e - a)) / (g * (b - c) + h * (c - a) + i * (a - b));
if (*v > -0.0 && *v < 1.0000001 && *w > -0.0 && *w < *v) return true;//is inside
else return false;//is outside
return 0;
}
从质心转换而来的几乎完美的笛卡尔坐标 在*v (x)和*w (y)双精度内导出。 在每种情况下,两个导出双精度对象前面都应该有一个*字符,可能是*v和*w 代码也可以用于四边形的另一个三角形。 特此签名只写三角形abc从顺时针abcd的四边形。
A---B
|..\\.o|
|....\\.|
D---C
o点在ABC三角形内 对于带有第二个三角形的测试,将此函数称为CDA方向,*v=1-*v后的结果应正确;* w = 1 - * w;为了四合院
下面是一个高效的Python实现:
def PointInsideTriangle2(pt,tri):
'''checks if point pt(2) is inside triangle tri(3x2). @Developer'''
a = 1/(-tri[1,1]*tri[2,0]+tri[0,1]*(-tri[1,0]+tri[2,0])+ \
tri[0,0]*(tri[1,1]-tri[2,1])+tri[1,0]*tri[2,1])
s = a*(tri[2,0]*tri[0,1]-tri[0,0]*tri[2,1]+(tri[2,1]-tri[0,1])*pt[0]+ \
(tri[0,0]-tri[2,0])*pt[1])
if s<0: return False
else: t = a*(tri[0,0]*tri[1,1]-tri[1,0]*tri[0,1]+(tri[0,1]-tri[1,1])*pt[0]+ \
(tri[1,0]-tri[0,0])*pt[1])
return ((t>0) and (1-s-t>0))
和一个示例输出: