我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

一个数字的平方根,假设该数字是一个完全平方。

复杂性为log(n)

/**
 * Calculate square root if the given number is a perfect square.
 * 
 * Approach: Sum of n odd numbers is equals to the square root of n*n, given 
 * that n is a perfect square.
 *
 * @param number
 * @return squareRoot
 */

public static int calculateSquareRoot(int number) {

    int sum=1;
    int count =1;
    int squareRoot=1;
    while(sum<number) {
        count+=2;
        sum+=count;
        squareRoot++;
    }
    return squareRoot;
}

其他回答

“我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法。”

答案令人印象深刻,但我没有看到一个简单的检查:

检查长右边的第一个数字是否为集合的成员(0,1,4,5,6,9)。如果不是,那么它不可能是一个“完美的正方形”。

eg.

4567-不能是完美的正方形。

如果速度是一个问题,为什么不将最常用的一组输入及其值划分到一个查找表中,然后执行您针对特殊情况提出的任何优化魔术算法?

有人指出,完美正方形的最后d位只能取某些值。数字n的最后d位(以b为基数)与n除以bd时的余数相同,即C符号n%pow(b,d)。

这可以推广到任何模数m,即n%m可以用来排除某些百分比的数字是完全平方。您当前使用的模数是64,这允许12,即19%的余数作为可能的平方。通过一点编码,我找到了模数110880,它只允许2016,即1.8%的余数作为可能的平方。因此,根据模数运算(即除法)和查找表与机器上的平方根的成本,使用这个模数可能会更快。

顺便说一句,如果Java有办法为查找表存储一个压缩的位数组,那么不要使用它。现在110880个32位字的RAM不多,提取一个机器字将比提取一个位更快。

为了表现,你经常不得不做一些宣传。其他人表达了不同的方法,然而,你注意到卡马克的黑客在达到N的某些值时更快。然后,你应该检查“N”,如果它小于N,请使用卡马克的方法,否则使用此处答案中描述的其他方法。

关于卡马克方法,似乎只需要重复一次就很容易了,这应该会使精度位数翻倍。毕竟,这是一种极其简化的迭代方法——牛顿迭代法,具有很好的第一个猜测。

关于您当前的最佳状态,我看到了两个微观优化:

使用mod255在检查后移动检查而不是0重新排列4的除法幂,以跳过通常(75%)情况下的所有检查。

I.e:

// Divide out powers of 4 using binary search

if((n & 0x3L) == 0) {
  n >>=2;

  if((n & 0xffffffffL) == 0)
    n >>= 32;
  if((n & 0xffffL) == 0)
      n >>= 16;
  if((n & 0xffL) == 0)
      n >>= 8;
  if((n & 0xfL) == 0)
      n >>= 4;
  if((n & 0x3L) == 0)
      n >>= 2;
}

更好的方法可能是

while ((n & 0x03L) == 0) n >>= 2;

显然,了解每个检查点有多少数字被剔除是很有意思的——我更怀疑这些检查是否真正独立,这使得事情变得棘手。