我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

整数问题需要整数解。因此

对(非负)整数进行二进制搜索,以找到最大的整数t,使t**2<=n。然后测试r**2=n是否精确。这需要时间O(log n)。

如果你不知道如何对正整数进行二进制搜索,因为集合是无界的,这很容易。首先计算二次幂的递增函数f(高于f(t)=t**2-n)。当你看到它变为正值时,你已经找到了一个上限。然后可以进行标准的二进制搜索。

其他回答

我不确定它是否会更快,甚至更准确,但你可以使用约翰·卡马克的神奇平方根算法来更快地解平方根。您可能很容易对所有可能的32位整数进行测试,并验证您实际上得到了正确的结果,因为这只是一个近似值。然而,现在我想起来,使用双打也是近似的,所以我不确定这会如何发挥作用。

不知道最快,但最简单的方法是以正常方式取平方根,将结果乘以自身,看看它是否与原始值匹配。

由于我们在这里讨论的是整数,fasted可能涉及一个集合,您可以在其中进行查找。

我喜欢对一些输入使用几乎正确的方法。这是一个“偏移”更高的版本。代码似乎有效,并通过了我的简单测试用例。

只需替换您的:

if(n < 410881L){...}

使用此代码:

if (n < 11043908100L) {
    //John Carmack hack, converted to Java.
    // See: http://www.codemaestro.com/reviews/9
    int i;
    float x2, y;

    x2 = n * 0.5F;
    y = n;
    i = Float.floatToRawIntBits(y);
    //using the magic number from 
    //http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf
    //since it more accurate
    i = 0x5f375a86 - (i >> 1);
    y = Float.intBitsToFloat(i);
    y = y * (1.5F - (x2 * y * y));
    y = y * (1.5F - (x2 * y * y)); //Newton iteration, more accurate

    sqrt = Math.round(1.0F / y);
} else {
    //Carmack hack gives incorrect answer for n >= 11043908100.
    sqrt = (long) Math.sqrt(n);
}

你必须做一些基准测试。最佳算法将取决于输入的分布。

您的算法可能接近最佳,但在调用平方根例程之前,您可能需要快速检查以排除某些可能性。例如,通过按位“和”查看十六进制数字的最后一位。完美的正方形只能以0、1、4或9结尾,以16为底。因此,对于75%的输入(假设它们是均匀分布的),可以避免调用平方根,以换取一些非常快的位旋转。

Kip对实现十六进制技巧的以下代码进行了基准测试。当测试数字1到100000000时,此代码的运行速度是原始代码的两倍。

public final static boolean isPerfectSquare(long n)
{
    if (n < 0)
        return false;

    switch((int)(n & 0xF))
    {
    case 0: case 1: case 4: case 9:
        long tst = (long)Math.sqrt(n);
        return tst*tst == n;

    default:
        return false;
    }
}

当我在C++中测试类似的代码时,它实际上比原始代码运行得慢。然而,当我消除switch语句时,十六进制技巧再次使代码速度提高了一倍。

int isPerfectSquare(int n)
{
    int h = n & 0xF;  // h is the last hex "digit"
    if (h > 9)
        return 0;
    // Use lazy evaluation to jump out of the if statement as soon as possible
    if (h != 2 && h != 3 && h != 5 && h != 6 && h != 7 && h != 8)
    {
        int t = (int) floor( sqrt((double) n) + 0.5 );
        return t*t == n;
    }
    return 0;
}

消除switch语句对C#代码几乎没有影响。

我希望此功能与所有正64位有符号整数

Math.sqrt()使用double作为输入参数,因此对于大于2^53的整数,不会得到准确的结果。