我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:
我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。
下面是我现在做的非常简单明了的方法:
public final static boolean isPerfectSquare(long n)
{
if (n < 0)
return false;
long tst = (long)(Math.sqrt(n) + 0.5);
return tst*tst == n;
}
注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。
我尝试了不同的解决方案:
经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。
考虑到一般的比特长度(尽管我在这里使用了特定的类型),我试图设计如下的简单算法。最初需要对0,1,2或<0进行简单而明显的检查。以下是简单的,因为它不试图使用任何现有的数学函数。大多数运算符可以用逐位运算符替换。我还没有用任何基准数据进行测试。我既不是数学专家,也不是计算机算法设计专家,我很乐意看到你们指出这个问题。我知道那里有很多改进的机会。
int main()
{
unsigned int c1=0 ,c2 = 0;
unsigned int x = 0;
unsigned int p = 0;
int k1 = 0;
scanf("%d",&p);
if(p % 2 == 0) {
x = p/2;
}
else {
x = (p/2) +1;
}
while(x)
{
if((x*x) > p) {
c1 = x;
x = x/2;
}else {
c2 = x;
break;
}
}
if((p%2) != 0)
c2++;
while(c2 < c1)
{
if((c2 * c2 ) == p) {
k1 = 1;
break;
}
c2++;
}
if(k1)
printf("\n Perfect square for %d", c2);
else
printf("\n Not perfect but nearest to :%d :", c2);
return 0;
}
这是最简单和最简洁的方法,尽管我不知道它在CPU周期方面的比较。如果您只想知道根是否是整数,那么这非常有用。如果你真的关心它是不是整数,你也可以弄清楚。这里有一个简单(纯)函数:
private static final MathContext precision = new MathContext(20);
private static final Function<Long, Boolean> isRootWhole = (n) -> {
long digit = n % 10;
if (digit == 2 || digit == 3 || digit == 7 || digit == 8) {
return false;
}
return new BigDecimal(n).sqrt(precision).scale() == 0;
};
如果您不需要微优化,那么这个答案在简单性和可维护性方面更好。如果要计算负数,则需要相应地处理,并将绝对值发送到函数中。我包含了一个小的优化,因为由于二次残差mod 10,没有完美的正方形具有2、3、7或8的十位数。
在我的CPU上,在0-10000000上运行此算法平均每次计算需要1000-1100纳秒。
如果执行的计算次数较少,则早期的计算需要更长的时间。
我有一个负面评论,说我以前的编辑不适用于大量数据。OP提到了Longs,Long的最大完美正方形是9223372030926249001,因此该方法适用于所有Longs。
关于卡马克方法,似乎只需要重复一次就很容易了,这应该会使精度位数翻倍。毕竟,这是一种极其简化的迭代方法——牛顿迭代法,具有很好的第一个猜测。
关于您当前的最佳状态,我看到了两个微观优化:
使用mod255在检查后移动检查而不是0重新排列4的除法幂,以跳过通常(75%)情况下的所有检查。
I.e:
// Divide out powers of 4 using binary search
if((n & 0x3L) == 0) {
n >>=2;
if((n & 0xffffffffL) == 0)
n >>= 32;
if((n & 0xffffL) == 0)
n >>= 16;
if((n & 0xffL) == 0)
n >>= 8;
if((n & 0xfL) == 0)
n >>= 4;
if((n & 0x3L) == 0)
n >>= 2;
}
更好的方法可能是
while ((n & 0x03L) == 0) n >>= 2;
显然,了解每个检查点有多少数字被剔除是很有意思的——我更怀疑这些检查是否真正独立,这使得事情变得棘手。
整数牛顿法
如果希望避免非整数运算,可以使用以下方法。它基本上使用了为整数运算而修改的牛顿法。
/**
* Test if the given number is a perfect square.
* @param n Must be greater than 0 and less
* than Long.MAX_VALUE.
* @return <code>true</code> if n is a perfect
* square, or <code>false</code> otherwise.
*/
public static boolean isSquare(long n)
{
long x1 = n;
long x2 = 1L;
while (x1 > x2)
{
x1 = (x1 + x2) / 2L;
x2 = n / x1;
}
return x1 == x2 && n % x1 == 0L;
}
此实现无法与使用Math.sqrt的解决方案竞争。但是,可以通过使用其他文章中描述的过滤机制来提高其性能。