我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

我不确定它是否会更快,甚至更准确,但你可以使用约翰·卡马克的神奇平方根算法来更快地解平方根。您可能很容易对所有可能的32位整数进行测试,并验证您实际上得到了正确的结果,因为这只是一个近似值。然而,现在我想起来,使用双打也是近似的,所以我不确定这会如何发挥作用。

其他回答

这是最简单和最简洁的方法,尽管我不知道它在CPU周期方面的比较。如果您只想知道根是否是整数,那么这非常有用。如果你真的关心它是不是整数,你也可以弄清楚。这里有一个简单(纯)函数:

private static final MathContext precision = new MathContext(20);

private static final Function<Long, Boolean> isRootWhole = (n) -> {
    long digit = n % 10;
    if (digit == 2 || digit == 3 || digit == 7 || digit == 8) {
        return false;
    }
    return new BigDecimal(n).sqrt(precision).scale() == 0;
};

如果您不需要微优化,那么这个答案在简单性和可维护性方面更好。如果要计算负数,则需要相应地处理,并将绝对值发送到函数中。我包含了一个小的优化,因为由于二次残差mod 10,没有完美的正方形具有2、3、7或8的十位数。

在我的CPU上,在0-10000000上运行此算法平均每次计算需要1000-1100纳秒。

如果执行的计算次数较少,则早期的计算需要更长的时间。

我有一个负面评论,说我以前的编辑不适用于大量数据。OP提到了Longs,Long的最大完美正方形是9223372030926249001,因此该方法适用于所有Longs。

我对这个线程中的几个算法进行了自己的分析,得出了一些新的结果。你可以在这个答案的编辑历史中看到这些旧结果,但它们并不准确,因为我犯了一个错误,浪费了时间分析了几个不接近的算法。然而,从几个不同的答案中吸取教训,我现在有两个算法可以击败这个线程的“赢家”。以下是我与其他人不同的核心:

// This is faster because a number is divisible by 2^4 or more only 6% of the time
// and more than that a vanishingly small percentage.
while((x & 0x3) == 0) x >>= 2;
// This is effectively the same as the switch-case statement used in the original
// answer. 
if((x & 0x7) != 1) return false;

然而,这条简单的行(大多数时候添加一条或两条非常快的指令)将switch-case语句大大简化为一条if语句。然而,如果许多被测试的数字具有两个因素的显著幂,则可以增加运行时。

以下算法如下:

互联网-Kip发布的答案Durron-我使用一次通过答案作为基础的修改答案DurronTwo-我使用两遍答案(由@JohnnyHeggheim)进行了修改,并进行了一些其他轻微修改。

如果数字是使用Math.abs(java.util.Random.netLong())生成的,下面是一个示例运行时

 0% Scenario{vm=java, trial=0, benchmark=Internet} 39673.40 ns; ?=378.78 ns @ 3 trials
33% Scenario{vm=java, trial=0, benchmark=Durron} 37785.75 ns; ?=478.86 ns @ 10 trials
67% Scenario{vm=java, trial=0, benchmark=DurronTwo} 35978.10 ns; ?=734.10 ns @ 10 trials

benchmark   us linear runtime
 Internet 39.7 ==============================
   Durron 37.8 ============================
DurronTwo 36.0 ===========================

vm: java
trial: 0

这里是一个示例运行时,如果它只在前一百万个longs上运行:

 0% Scenario{vm=java, trial=0, benchmark=Internet} 2933380.84 ns; ?=56939.84 ns @ 10 trials
33% Scenario{vm=java, trial=0, benchmark=Durron} 2243266.81 ns; ?=50537.62 ns @ 10 trials
67% Scenario{vm=java, trial=0, benchmark=DurronTwo} 3159227.68 ns; ?=10766.22 ns @ 3 trials

benchmark   ms linear runtime
 Internet 2.93 ===========================
   Durron 2.24 =====================
DurronTwo 3.16 ==============================

vm: java
trial: 0

正如你所看到的,DurronTwo在大输入方面做得更好,因为它经常使用魔术,但与第一个算法和Math.sqrt相比,它受到了打击,因为数字要小得多。同时,更简单的Durron是一个巨大的赢家,因为在前100万个数字中,它不必多次除以4。

这是Durron:

public final static boolean isPerfectSquareDurron(long n) {
    if(n < 0) return false;
    if(n == 0) return true;

    long x = n;
    // This is faster because a number is divisible by 16 only 6% of the time
    // and more than that a vanishingly small percentage.
    while((x & 0x3) == 0) x >>= 2;
    // This is effectively the same as the switch-case statement used in the original
    // answer. 
    if((x & 0x7) == 1) {

        long sqrt;
        if(x < 410881L)
        {
            int i;
            float x2, y;

            x2 = x * 0.5F;
            y  = x;
            i  = Float.floatToRawIntBits(y);
            i  = 0x5f3759df - ( i >> 1 );
            y  = Float.intBitsToFloat(i);
            y  = y * ( 1.5F - ( x2 * y * y ) );

            sqrt = (long)(1.0F/y);
        } else {
            sqrt = (long) Math.sqrt(x);
        }
        return sqrt*sqrt == x;
    }
    return false;
}

还有DurronTwo

public final static boolean isPerfectSquareDurronTwo(long n) {
    if(n < 0) return false;
    // Needed to prevent infinite loop
    if(n == 0) return true;

    long x = n;
    while((x & 0x3) == 0) x >>= 2;
    if((x & 0x7) == 1) {
        long sqrt;
        if (x < 41529141369L) {
            int i;
            float x2, y;

            x2 = x * 0.5F;
            y = x;
            i = Float.floatToRawIntBits(y);
            //using the magic number from 
            //http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf
            //since it more accurate
            i = 0x5f375a86 - (i >> 1);
            y = Float.intBitsToFloat(i);
            y = y * (1.5F - (x2 * y * y));
            y = y * (1.5F - (x2 * y * y)); //Newton iteration, more accurate
            sqrt = (long) ((1.0F/y) + 0.2);
        } else {
            //Carmack hack gives incorrect answer for n >= 41529141369.
            sqrt = (long) Math.sqrt(x);
        }
        return sqrt*sqrt == x;
    }
    return false;
}

还有我的基准线束:(需要谷歌卡尺0.1-rc5)

public class SquareRootBenchmark {
    public static class Benchmark1 extends SimpleBenchmark {
        private static final int ARRAY_SIZE = 10000;
        long[] trials = new long[ARRAY_SIZE];

        @Override
        protected void setUp() throws Exception {
            Random r = new Random();
            for (int i = 0; i < ARRAY_SIZE; i++) {
                trials[i] = Math.abs(r.nextLong());
            }
        }


        public int timeInternet(int reps) {
            int trues = 0;
            for(int i = 0; i < reps; i++) {
                for(int j = 0; j < ARRAY_SIZE; j++) {
                    if(SquareRootAlgs.isPerfectSquareInternet(trials[j])) trues++;
                }
            }

            return trues;   
        }

        public int timeDurron(int reps) {
            int trues = 0;
            for(int i = 0; i < reps; i++) {
                for(int j = 0; j < ARRAY_SIZE; j++) {
                    if(SquareRootAlgs.isPerfectSquareDurron(trials[j])) trues++;
                }
            }

            return trues;   
        }

        public int timeDurronTwo(int reps) {
            int trues = 0;
            for(int i = 0; i < reps; i++) {
                for(int j = 0; j < ARRAY_SIZE; j++) {
                    if(SquareRootAlgs.isPerfectSquareDurronTwo(trials[j])) trues++;
                }
            }

            return trues;   
        }
    }

    public static void main(String... args) {
        Runner.main(Benchmark1.class, args);
    }
}

更新:我做了一个新的算法,在某些情况下更快,在其他情况下更慢,我根据不同的输入获得了不同的基准。如果我们计算模0xFFFFFF=3 x 3 x 5 x 7 x 13 x 17 x 241,我们可以消除97.82%的非平方数。这可以(某种程度上)在一行中完成,有5个按位操作:

if (!goodLookupSquares[(int) ((n & 0xFFFFFFl) + ((n >> 24) & 0xFFFFFFl) + (n >> 48))]) return false;

结果索引是1)残差,2)残差+0xFFFFFF,或3)残差+0x1FFFFFE。当然,我们需要有一个模为0xFFFFFF的残数的查找表,它大约是一个3mb的文件(在本例中存储为ascii文本十进制数字,不是最佳的,但使用ByteBuffer等显然可以改进。但由于这是预计算,所以没什么大不了的。您可以在这里找到文件(或自己生成):

public final static boolean isPerfectSquareDurronThree(long n) {
    if(n < 0) return false;
    if(n == 0) return true;

    long x = n;
    while((x & 0x3) == 0) x >>= 2;
    if((x & 0x7) == 1) {
        if (!goodLookupSquares[(int) ((n & 0xFFFFFFl) + ((n >> 24) & 0xFFFFFFl) + (n >> 48))]) return false;
        long sqrt;
        if(x < 410881L)
        {
            int i;
            float x2, y;

            x2 = x * 0.5F;
            y  = x;
            i  = Float.floatToRawIntBits(y);
            i  = 0x5f3759df - ( i >> 1 );
            y  = Float.intBitsToFloat(i);
            y  = y * ( 1.5F - ( x2 * y * y ) );

            sqrt = (long)(1.0F/y);
        } else {
            sqrt = (long) Math.sqrt(x);
        }
        return sqrt*sqrt == x;
    }
    return false;
}

我将其加载到布尔数组中,如下所示:

private static boolean[] goodLookupSquares = null;

public static void initGoodLookupSquares() throws Exception {
    Scanner s = new Scanner(new File("24residues_squares.txt"));

    goodLookupSquares = new boolean[0x1FFFFFE];

    while(s.hasNextLine()) {
        int residue = Integer.valueOf(s.nextLine());
        goodLookupSquares[residue] = true;
        goodLookupSquares[residue + 0xFFFFFF] = true;
        goodLookupSquares[residue + 0x1FFFFFE] = true;
    }

    s.close();
}

示例运行时。在我参加的每一次测试中,它都击败了德隆(第一版)。

 0% Scenario{vm=java, trial=0, benchmark=Internet} 40665.77 ns; ?=566.71 ns @ 10 trials
33% Scenario{vm=java, trial=0, benchmark=Durron} 38397.60 ns; ?=784.30 ns @ 10 trials
67% Scenario{vm=java, trial=0, benchmark=DurronThree} 36171.46 ns; ?=693.02 ns @ 10 trials

  benchmark   us linear runtime
   Internet 40.7 ==============================
     Durron 38.4 ============================
DurronThree 36.2 ==========================

vm: java
trial: 0

你应该从一开始就去掉N的2次方部分。

第二次编辑下面m的神奇表达式应该是

m = N - (N & (N-1));

而不是书面的

第二次编辑结束

m = N & (N-1); // the lawest bit of N
N /= m;
byte = N & 0x0F;
if ((m % 2) || (byte !=1 && byte !=9))
  return false;

第一次编辑:

轻微改进:

m = N & (N-1); // the lawest bit of N
N /= m;
if ((m % 2) || (N & 0x07 != 1))
  return false;

第一次编辑结束

现在像往常一样继续。这样,当你到达浮点部分时,你已经去掉了所有2次方部分为奇数(大约一半)的数字,然后你只考虑剩下的1/8。也就是说,你在6%的数字上运行浮点部分。

可能是该问题的最佳算法是快速整数平方根算法https://stackoverflow.com/a/51585204/5191852

@Kde声称牛顿法的三次迭代对于32位整数的精度为±1就足够了。当然,64位整数需要更多的迭代,可能是6或7。

有人指出,完美正方形的最后d位只能取某些值。数字n的最后d位(以b为基数)与n除以bd时的余数相同,即C符号n%pow(b,d)。

这可以推广到任何模数m,即n%m可以用来排除某些百分比的数字是完全平方。您当前使用的模数是64,这允许12,即19%的余数作为可能的平方。通过一点编码,我找到了模数110880,它只允许2016,即1.8%的余数作为可能的平方。因此,根据模数运算(即除法)和查找表与机器上的平方根的成本,使用这个模数可能会更快。

顺便说一句,如果Java有办法为查找表存储一个压缩的位数组,那么不要使用它。现在110880个32位字的RAM不多,提取一个机器字将比提取一个位更快。