我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

这是最简单和最简洁的方法,尽管我不知道它在CPU周期方面的比较。如果您只想知道根是否是整数,那么这非常有用。如果你真的关心它是不是整数,你也可以弄清楚。这里有一个简单(纯)函数:

private static final MathContext precision = new MathContext(20);

private static final Function<Long, Boolean> isRootWhole = (n) -> {
    long digit = n % 10;
    if (digit == 2 || digit == 3 || digit == 7 || digit == 8) {
        return false;
    }
    return new BigDecimal(n).sqrt(precision).scale() == 0;
};

如果您不需要微优化,那么这个答案在简单性和可维护性方面更好。如果要计算负数,则需要相应地处理,并将绝对值发送到函数中。我包含了一个小的优化,因为由于二次残差mod 10,没有完美的正方形具有2、3、7或8的十位数。

在我的CPU上,在0-10000000上运行此算法平均每次计算需要1000-1100纳秒。

如果执行的计算次数较少,则早期的计算需要更长的时间。

我有一个负面评论,说我以前的编辑不适用于大量数据。OP提到了Longs,Long的最大完美正方形是9223372030926249001,因此该方法适用于所有Longs。

其他回答

这是旧的Marchant计算器算法(抱歉,我没有参考)从十进制到二进制的修改,在Ruby中,专门针对这个问题进行了修改:

def isexactsqrt(v)
    value = v.abs
    residue = value
    root = 0
    onebit = 1
    onebit <<= 8 while (onebit < residue)
    onebit >>= 2 while (onebit > residue)
    while (onebit > 0)
        x = root + onebit
        if (residue >= x) then
            residue -= x
            root = x + onebit
        end
        root >>= 1
        onebit >>= 2
    end
    return (residue == 0)
end

这里有一个类似的处理方法(可能有编码风格/气味或笨拙的O/O——重要的是算法,C++不是我的母语)。在这种情况下,我们要查找残数==0:

#include <iostream>  

using namespace std;  
typedef unsigned long long int llint;

class ISqrt {           // Integer Square Root
    llint value;        // Integer whose square root is required
    llint root;         // Result: floor(sqrt(value))
    llint residue;      // Result: value-root*root
    llint onebit, x;    // Working bit, working value

public:

    ISqrt(llint v = 2) {    // Constructor
        Root(v);            // Take the root 
    };

    llint Root(llint r) {   // Resets and calculates new square root
        value = r;          // Store input
        residue = value;    // Initialise for subtracting down
        root = 0;           // Clear root accumulator
        
        onebit = 1;                 // Calculate start value of counter
        onebit <<= (8*sizeof(llint)-2);         // Set up counter bit as greatest odd power of 2 
        while (onebit > residue) {onebit >>= 2; };  // Shift down until just < value
        
        while (onebit > 0) {
            x = root ^ onebit;          // Will check root+1bit (root bit corresponding to onebit is always zero)
            if (residue >= x) {         // Room to subtract?
                residue -= x;           // Yes - deduct from residue
                root = x + onebit;      // and step root
            };
            root >>= 1;
            onebit >>= 2;
        };
        return root;                    
    };
    llint Residue() {           // Returns residue from last calculation
        return residue;                 
    };
};

int main() {
    llint big, i, q, r, v, delta;
    big = 0; big = (big-1);         // Kludge for "big number"
    ISqrt b;                            // Make q sqrt generator
    for ( i = big; i > 0 ; i /= 7 ) {   // for several numbers
        q = b.Root(i);                  // Get the square root
        r = b.Residue();                // Get the residue
        v = q*q+r;                      // Recalc original value
        delta = v-i;                    // And diff, hopefully 0
        cout << i << ": " << q << " ++ " << r << " V: " << v << " Delta: " << delta << "\n";
    };
    return 0;
};

如果最后的X位数字是N,那么应该可以更有效地包装“不能是完美的正方形”!我将使用java 32位int,并生成足够的数据来检查数字的最后16位,即2048个十六进制int值。

...

好吧。要么我遇到了一些超出我理解范围的数论,要么我的代码中有一个错误。无论如何,以下是代码:

public static void main(String[] args) {
    final int BITS = 16;

    BitSet foo = new BitSet();

    for(int i = 0; i< (1<<BITS); i++) {
        int sq = (i*i);
        sq = sq & ((1<<BITS)-1);
        foo.set(sq);
    }

    System.out.println("int[] mayBeASquare = {");

    for(int i = 0; i< 1<<(BITS-5); i++) {
        int kk = 0;
        for(int j = 0; j<32; j++) {
            if(foo.get((i << 5) | j)) {
                kk |= 1<<j;
            }
        }
        System.out.print("0x" + Integer.toHexString(kk) + ", ");
        if(i%8 == 7) System.out.println();
    }
    System.out.println("};");
}

结果如下:

(ed:由于pretify.js性能不佳而取消;查看修订历史以查看。)

如果你想要速度,考虑到整数的大小是有限的,我想最快的方法是(a)按大小划分参数(例如,按最大位集划分类别),然后对照该范围内的完美平方数组检查值。

整数问题需要整数解。因此

对(非负)整数进行二进制搜索,以找到最大的整数t,使t**2<=n。然后测试r**2=n是否精确。这需要时间O(log n)。

如果你不知道如何对正整数进行二进制搜索,因为集合是无界的,这很容易。首先计算二次幂的递增函数f(高于f(t)=t**2-n)。当你看到它变为正值时,你已经找到了一个上限。然后可以进行标准的二进制搜索。

不知道最快,但最简单的方法是以正常方式取平方根,将结果乘以自身,看看它是否与原始值匹配。

由于我们在这里讨论的是整数,fasted可能涉及一个集合,您可以在其中进行查找。