我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

这是最简单和最简洁的方法,尽管我不知道它在CPU周期方面的比较。如果您只想知道根是否是整数,那么这非常有用。如果你真的关心它是不是整数,你也可以弄清楚。这里有一个简单(纯)函数:

private static final MathContext precision = new MathContext(20);

private static final Function<Long, Boolean> isRootWhole = (n) -> {
    long digit = n % 10;
    if (digit == 2 || digit == 3 || digit == 7 || digit == 8) {
        return false;
    }
    return new BigDecimal(n).sqrt(precision).scale() == 0;
};

如果您不需要微优化,那么这个答案在简单性和可维护性方面更好。如果要计算负数,则需要相应地处理,并将绝对值发送到函数中。我包含了一个小的优化,因为由于二次残差mod 10,没有完美的正方形具有2、3、7或8的十位数。

在我的CPU上,在0-10000000上运行此算法平均每次计算需要1000-1100纳秒。

如果执行的计算次数较少,则早期的计算需要更长的时间。

我有一个负面评论,说我以前的编辑不适用于大量数据。OP提到了Longs,Long的最大完美正方形是9223372030926249001,因此该方法适用于所有Longs。

其他回答

maartinus解决方案的以下简化似乎使运行时减少了几个百分点,但我在基准测试方面做得不够好,无法产生我可以信任的基准:

long goodMask; // 0xC840C04048404040 computed below
{
    for (int i=0; i<64; ++i) goodMask |= Long.MIN_VALUE >>> (i*i);
}

public boolean isSquare(long x) {
    // This tests if the 6 least significant bits are right.
    // Moving the to be tested bit to the highest position saves us masking.
    if (goodMask << x >= 0) return false;
    // Remove an even number of trailing zeros, leaving at most one.
    x >>= (Long.numberOfTrailingZeros(x) & (-2);
    // Repeat the test on the 6 least significant remaining bits.
    if (goodMask << x >= 0 | x <= 0) return x == 0;
    // Do it in the classical way.
    // The correctness is not trivial as the conversion from long to double is lossy!
    final long tst = (long) Math.sqrt(x);
    return tst * tst == x;
}

值得检查的是,如何省略第一次测试,

if (goodMask << x >= 0) return false;

会影响性能。

考虑到一般的比特长度(尽管我在这里使用了特定的类型),我试图设计如下的简单算法。最初需要对0,1,2或<0进行简单而明显的检查。以下是简单的,因为它不试图使用任何现有的数学函数。大多数运算符可以用逐位运算符替换。我还没有用任何基准数据进行测试。我既不是数学专家,也不是计算机算法设计专家,我很乐意看到你们指出这个问题。我知道那里有很多改进的机会。

int main()
{
    unsigned int c1=0 ,c2 = 0;  
    unsigned int x = 0;  
    unsigned int p = 0;  
    int k1 = 0;  
    scanf("%d",&p);  
    if(p % 2 == 0) {  
        x = p/2; 
    }  
    else {  
        x = (p/2) +1;  
    }  
    while(x) 
    {
        if((x*x) > p) {  
            c1 = x;  
            x = x/2; 
        }else {  
            c2 = x;  
            break;  
        }  
    }  
    if((p%2) != 0)  
        c2++;

    while(c2 < c1) 
    {  
        if((c2 * c2 ) == p) {  
            k1 = 1;  
            break;  
        }  
        c2++; 
    }  
    if(k1)  
        printf("\n Perfect square for %d", c2);  
    else  
        printf("\n Not perfect but nearest to :%d :", c2);  
    return 0;  
}  

为了记录在案,另一种方法是使用素分解。如果分解的每个因子都是偶数,那么这个数就是一个完美的平方。所以你想要的是看看一个数是否可以分解成质数平方的乘积。当然,你不需要获得这样的分解,只是为了看看它是否存在。

首先建立一个小于2^32的素数平方表。这远远小于一个包含所有整数的表,直到这个极限。

解决方案如下:

boolean isPerfectSquare(long number)
{
    if (number < 0) return false;
    if (number < 2) return true;

    for (int i = 0; ; i++)
    {
        long square = squareTable[i];
        if (square > number) return false;
        while (number % square == 0)
        {
            number /= square;
        }
        if (number == 1) return true;
    }
}

我想这有点神秘。它所做的是在每一步中检查质数的平方除以输入数。如果这样做了,那么它将尽可能地将数字除以平方,以从素数分解中删除这个平方。如果通过这个过程,我们得到1,那么输入数是素数平方的分解。如果平方比数字本身大,那么这个平方或任何更大的平方都无法分割它,所以数字不能是素数平方的分解。

考虑到现在的sqrt是在硬件中完成的,并且需要在这里计算素数,我想这个解决方案要慢得多。但正如mrzl在他的回答中所说,它应该比sqrt的解决方案给出更好的结果,sqrt的工作时间不会超过2^54。

我在想我在数值分析课程中度过的可怕时光。

然后我记得,在Quake源代码中,有一个函数围绕着“网络”旋转:

float Q_rsqrt( float number )
{
  long i;
  float x2, y;
  const float threehalfs = 1.5F;

  x2 = number * 0.5F;
  y  = number;
  i  = * ( long * ) &y;  // evil floating point bit level hacking
  i  = 0x5f3759df - ( i >> 1 ); // wtf?
  y  = * ( float * ) &i;
  y  = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  // y  = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed

  #ifndef Q3_VM
  #ifdef __linux__
    assert( !isnan(y) ); // bk010122 - FPE?
  #endif
  #endif
  return y;
}

它基本上使用牛顿近似函数(记不清确切的名字)计算平方根。

它应该是可用的,甚至可能更快,它来自一个非凡的id软件的游戏!

它是用C++编写的,但一旦你有了这样的想法,在Java中重用同样的技术应该不会太难:

我最初在以下位置找到它:http://www.codemaestro.com/reviews/9

牛顿的方法在维基百科上解释:http://en.wikipedia.org/wiki/Newton%27s_method

您可以通过链接了解更多的工作原理,但如果您不太在意,那么这大概是我在阅读博客和参加数值分析课程时所记得的:

*(long*)&y基本上是一个快速转换为long的函数,因此整数运算可以应用于原始字节。0x5f3759df-(i>>1);line是近似函数的预先计算的种子值。*(float*)-i将值转换回浮点。y=y*(three-half-(x2*y*y))行基本上再次迭代函数上的值。

在结果上迭代函数的次数越多,逼近函数给出的值就越精确。在Quake的案例中,一次迭代“足够好”,但如果不是为了你。。。然后您可以添加所需的迭代次数。

这应该更快,因为它减少了在简单平方根中执行的除法运算的数量(实际上是一个*0.5F乘法运算),并用一些固定数量的乘法运算代替。

标签中提到了项目Euler,其中的许多问题需要检查数字>>2^64。当您使用80字节缓冲区时,上面提到的大多数优化都不容易工作。

我使用了javaBigInteger和稍微修改过的Newton方法,它对整数更有效。问题是,精确的平方n^2收敛到(n-1)而不是n,因为n^2-1=(n-1)(n+1),最终误差仅比最终除数低一步,算法终止。在计算错误之前,通过在原始参数中添加一个参数很容易解决。(为立方体根等添加两个)

这个算法的一个优点是,你可以立即判断出这个数字是否是一个完美的平方-牛顿方法中的最终误差(不是校正)将为零。一个简单的修改也可以让您快速计算floor(sqrt(x)),而不是最接近的整数。这对于几个Euler问题很方便。