我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:
我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。
下面是我现在做的非常简单明了的方法:
public final static boolean isPerfectSquare(long n)
{
if (n < 0)
return false;
long tst = (long)(Math.sqrt(n) + 0.5);
return tst*tst == n;
}
注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。
我尝试了不同的解决方案:
经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。
如果你做了一个二进制斩试图找到“正确”的平方根,你可以很容易地检测到你得到的值是否足够接近:
(n+1)^2 = n^2 + 2n + 1
(n-1)^2 = n^2 - 2n + 1
因此,在计算了n^2之后,选项如下:
n ^2=目标:已完成,返回truen^2+2n+1>target>n^2:你很接近,但并不完美:return falsen^2-2n+1<目标<n^2:同上目标<n^2-2n+1:低位n上的二进制斩波目标>n^2+2n+1:较高n上的二进制斩波
(抱歉,这使用n作为您当前的猜测,并将其作为参数的目标。对此感到困惑深表歉意!)
我不知道这是否会更快,但值得一试。
编辑:二进制斩不必接受整个整数范围,或者(2^x)^2=2^(2x),所以一旦你在目标中找到了最高位(这可以用一个小技巧来完成;我完全忘记了怎么做),你就可以快速得到一系列可能的答案。请注意,一个简单的二进制斩仍然只需要31或32次迭代。
你必须做一些基准测试。最佳算法将取决于输入的分布。
您的算法可能接近最佳,但在调用平方根例程之前,您可能需要快速检查以排除某些可能性。例如,通过按位“和”查看十六进制数字的最后一位。完美的正方形只能以0、1、4或9结尾,以16为底。因此,对于75%的输入(假设它们是均匀分布的),可以避免调用平方根,以换取一些非常快的位旋转。
Kip对实现十六进制技巧的以下代码进行了基准测试。当测试数字1到100000000时,此代码的运行速度是原始代码的两倍。
public final static boolean isPerfectSquare(long n)
{
if (n < 0)
return false;
switch((int)(n & 0xF))
{
case 0: case 1: case 4: case 9:
long tst = (long)Math.sqrt(n);
return tst*tst == n;
default:
return false;
}
}
当我在C++中测试类似的代码时,它实际上比原始代码运行得慢。然而,当我消除switch语句时,十六进制技巧再次使代码速度提高了一倍。
int isPerfectSquare(int n)
{
int h = n & 0xF; // h is the last hex "digit"
if (h > 9)
return 0;
// Use lazy evaluation to jump out of the if statement as soon as possible
if (h != 2 && h != 3 && h != 5 && h != 6 && h != 7 && h != 8)
{
int t = (int) floor( sqrt((double) n) + 0.5 );
return t*t == n;
}
return 0;
}
消除switch语句对C#代码几乎没有影响。
sqrt调用并不完全准确,正如前面所提到的,但它很有趣,也很有启发性,因为它不会在速度方面影响其他答案。毕竟,sqrt的汇编语言指令序列很小。英特尔有一个硬件指令,我相信Java不会使用它,因为它不符合IEEE。
那么为什么速度慢呢?因为Java实际上是通过JNI调用一个C例程,而且这样做实际上比调用一个Java子程序慢,而Java子程序本身比内联调用慢。这很烦人,Java本应该想出更好的解决方案,即在必要时构建浮点库调用。哦,好吧。
在C++中,我怀疑所有复杂的替代方案都会失去速度,但我还没有检查过它们。我所做的,也是Java人会发现有用的,是一个简单的黑客,是a.Rex建议的特例测试的扩展。使用单个长值作为位数组,不检查边界。这样,您就有了64位布尔查找。
typedef unsigned long long UVLONG
UVLONG pp1,pp2;
void init2() {
for (int i = 0; i < 64; i++) {
for (int j = 0; j < 64; j++)
if (isPerfectSquare(i * 64 + j)) {
pp1 |= (1 << j);
pp2 |= (1 << i);
break;
}
}
cout << "pp1=" << pp1 << "," << pp2 << "\n";
}
inline bool isPerfectSquare5(UVLONG x) {
return pp1 & (1 << (x & 0x3F)) ? isPerfectSquare(x) : false;
}
在我的core2双人游戏机上,PerfectSquare5的程序运行时间约为1/3。我怀疑,沿着相同的路线进一步调整可能会进一步缩短平均时间,但每次检查时,你都在用更多的测试来换取更多的消除,所以你不能在这条路上走得太远。
当然,你可以用同样的方法检查高6位,而不是单独测试阴性。
请注意,我所做的只是消除可能的正方形,但当我有一个潜在的情况时,我必须调用原始的内联的isPerfectSquare。
init2例程被调用一次以初始化pp1和pp2的静态值。请注意,在我的C++实现中,我使用的是无符号long-long,因此,既然有符号,就必须使用>>>运算符。
没有内在的必要对数组进行边界检查,但Java的优化器必须很快地解决这一问题,所以我不怪他们。
考虑到一般的比特长度(尽管我在这里使用了特定的类型),我试图设计如下的简单算法。最初需要对0,1,2或<0进行简单而明显的检查。以下是简单的,因为它不试图使用任何现有的数学函数。大多数运算符可以用逐位运算符替换。我还没有用任何基准数据进行测试。我既不是数学专家,也不是计算机算法设计专家,我很乐意看到你们指出这个问题。我知道那里有很多改进的机会。
int main()
{
unsigned int c1=0 ,c2 = 0;
unsigned int x = 0;
unsigned int p = 0;
int k1 = 0;
scanf("%d",&p);
if(p % 2 == 0) {
x = p/2;
}
else {
x = (p/2) +1;
}
while(x)
{
if((x*x) > p) {
c1 = x;
x = x/2;
}else {
c2 = x;
break;
}
}
if((p%2) != 0)
c2++;
while(c2 < c1)
{
if((c2 * c2 ) == p) {
k1 = 1;
break;
}
c2++;
}
if(k1)
printf("\n Perfect square for %d", c2);
else
printf("\n Not perfect but nearest to :%d :", c2);
return 0;
}