我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

用牛顿法计算平方根的速度快得惊人。。。只要起始值是合理的。然而,没有合理的起始值,在实践中,我们以平分和对数(2^64)行为结束。要真正做到快速,我们需要一种快速的方法来获得一个合理的初始值,这意味着我们需要进入机器语言。如果一个处理器在奔腾中提供了一个像POPCNT这样的指令,它对前导零进行计数,我们可以使用它来获得一个具有一半有效位的起始值。小心地,我们可以找到一个固定数量的牛顿步数,这将总是足够的。(因此,前面提到了需要循环并具有非常快的执行。)

第二种解决方案是通过浮点设备,它可能具有快速的sqrt计算(如i87协处理器)。即使通过exp()和log()进行偏移,也可能比牛顿退化为二进制搜索更快。这有一个棘手的方面,即依赖于处理器的分析,以确定后续是否需要改进。

第三种解决方案解决了一个稍有不同的问题,但很值得一提,因为问题中描述了情况。如果你想为稍有不同的数字计算很多平方根,你可以使用牛顿迭代,如果你从来没有重新初始化起始值,但只需将其保留在之前的计算停止的地方。我已经在至少一个欧拉问题中成功地使用了这一方法。

其他回答

整数问题需要整数解。因此

对(非负)整数进行二进制搜索,以找到最大的整数t,使t**2<=n。然后测试r**2=n是否精确。这需要时间O(log n)。

如果你不知道如何对正整数进行二进制搜索,因为集合是无界的,这很容易。首先计算二次幂的递增函数f(高于f(t)=t**2-n)。当你看到它变为正值时,你已经找到了一个上限。然后可以进行标准的二进制搜索。

“我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法。”

答案令人印象深刻,但我没有看到一个简单的检查:

检查长右边的第一个数字是否为集合的成员(0,1,4,5,6,9)。如果不是,那么它不可能是一个“完美的正方形”。

eg.

4567-不能是完美的正方形。

如果你想要速度,考虑到整数的大小是有限的,我想最快的方法是(a)按大小划分参数(例如,按最大位集划分类别),然后对照该范围内的完美平方数组检查值。

static boolean isPerfectSquare (int input) {
  return Math.sqrt(input) == (int) Math.sqrt(input);
}

如果输入的平方根的整数值等于双倍值,则返回该值。这意味着它是一个整数,它将返回true。否则,将返回false。

我在想我在数值分析课程中度过的可怕时光。

然后我记得,在Quake源代码中,有一个函数围绕着“网络”旋转:

float Q_rsqrt( float number )
{
  long i;
  float x2, y;
  const float threehalfs = 1.5F;

  x2 = number * 0.5F;
  y  = number;
  i  = * ( long * ) &y;  // evil floating point bit level hacking
  i  = 0x5f3759df - ( i >> 1 ); // wtf?
  y  = * ( float * ) &i;
  y  = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  // y  = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed

  #ifndef Q3_VM
  #ifdef __linux__
    assert( !isnan(y) ); // bk010122 - FPE?
  #endif
  #endif
  return y;
}

它基本上使用牛顿近似函数(记不清确切的名字)计算平方根。

它应该是可用的,甚至可能更快,它来自一个非凡的id软件的游戏!

它是用C++编写的,但一旦你有了这样的想法,在Java中重用同样的技术应该不会太难:

我最初在以下位置找到它:http://www.codemaestro.com/reviews/9

牛顿的方法在维基百科上解释:http://en.wikipedia.org/wiki/Newton%27s_method

您可以通过链接了解更多的工作原理,但如果您不太在意,那么这大概是我在阅读博客和参加数值分析课程时所记得的:

*(long*)&y基本上是一个快速转换为long的函数,因此整数运算可以应用于原始字节。0x5f3759df-(i>>1);line是近似函数的预先计算的种子值。*(float*)-i将值转换回浮点。y=y*(three-half-(x2*y*y))行基本上再次迭代函数上的值。

在结果上迭代函数的次数越多,逼近函数给出的值就越精确。在Quake的案例中,一次迭代“足够好”,但如果不是为了你。。。然后您可以添加所需的迭代次数。

这应该更快,因为它减少了在简单平方根中执行的除法运算的数量(实际上是一个*0.5F乘法运算),并用一些固定数量的乘法运算代替。