我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:
我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。
下面是我现在做的非常简单明了的方法:
public final static boolean isPerfectSquare(long n)
{
if (n < 0)
return false;
long tst = (long)(Math.sqrt(n) + 0.5);
return tst*tst == n;
}
注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。
我尝试了不同的解决方案:
经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。
这里有一个分而治之的解决方案。
如果自然数(数字)的平方根是自然数(解),您可以根据数字的位数轻松确定解的范围:
数字有1位:范围内的解=1-4数字有2位数:范围内的解=3-10数字有3位数:范围内的解=10-40数字有4位数字:范围=30-100数字有5位数:范围内的解=100-400
注意到重复了吗?
您可以在二进制搜索方法中使用此范围,以查看是否存在以下解决方案:
number == solution * solution
这是密码
这是我的类SquareRootChecker
public class SquareRootChecker {
private long number;
private long initialLow;
private long initialHigh;
public SquareRootChecker(long number) {
this.number = number;
initialLow = 1;
initialHigh = 4;
if (Long.toString(number).length() % 2 == 0) {
initialLow = 3;
initialHigh = 10;
}
for (long i = 0; i < Long.toString(number).length() / 2; i++) {
initialLow *= 10;
initialHigh *= 10;
}
if (Long.toString(number).length() % 2 == 0) {
initialLow /= 10;
initialHigh /=10;
}
}
public boolean checkSquareRoot() {
return findSquareRoot(initialLow, initialHigh, number);
}
private boolean findSquareRoot(long low, long high, long number) {
long check = low + (high - low) / 2;
if (high >= low) {
if (number == check * check) {
return true;
}
else if (number < check * check) {
high = check - 1;
return findSquareRoot(low, high, number);
}
else {
low = check + 1;
return findSquareRoot(low, high, number);
}
}
return false;
}
}
下面是一个如何使用它的示例。
long number = 1234567;
long square = number * number;
SquareRootChecker squareRootChecker = new SquareRootChecker(square);
System.out.println(square + ": " + squareRootChecker.checkSquareRoot()); //Prints "1524155677489: true"
long notSquare = square + 1;
squareRootChecker = new SquareRootChecker(notSquare);
System.out.println(notSquare + ": " + squareRootChecker.checkSquareRoot()); //Prints "1524155677490: false"
我在想我在数值分析课程中度过的可怕时光。
然后我记得,在Quake源代码中,有一个函数围绕着“网络”旋转:
float Q_rsqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> 1 ); // wtf?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
#ifndef Q3_VM
#ifdef __linux__
assert( !isnan(y) ); // bk010122 - FPE?
#endif
#endif
return y;
}
它基本上使用牛顿近似函数(记不清确切的名字)计算平方根。
它应该是可用的,甚至可能更快,它来自一个非凡的id软件的游戏!
它是用C++编写的,但一旦你有了这样的想法,在Java中重用同样的技术应该不会太难:
我最初在以下位置找到它:http://www.codemaestro.com/reviews/9
牛顿的方法在维基百科上解释:http://en.wikipedia.org/wiki/Newton%27s_method
您可以通过链接了解更多的工作原理,但如果您不太在意,那么这大概是我在阅读博客和参加数值分析课程时所记得的:
*(long*)&y基本上是一个快速转换为long的函数,因此整数运算可以应用于原始字节。0x5f3759df-(i>>1);line是近似函数的预先计算的种子值。*(float*)-i将值转换回浮点。y=y*(three-half-(x2*y*y))行基本上再次迭代函数上的值。
在结果上迭代函数的次数越多,逼近函数给出的值就越精确。在Quake的案例中,一次迭代“足够好”,但如果不是为了你。。。然后您可以添加所需的迭代次数。
这应该更快,因为它减少了在简单平方根中执行的除法运算的数量(实际上是一个*0.5F乘法运算),并用一些固定数量的乘法运算代替。