我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:
我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。
下面是我现在做的非常简单明了的方法:
public final static boolean isPerfectSquare(long n)
{
if (n < 0)
return false;
long tst = (long)(Math.sqrt(n) + 0.5);
return tst*tst == n;
}
注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。
我尝试了不同的解决方案:
经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。
这是旧的Marchant计算器算法(抱歉,我没有参考)从十进制到二进制的修改,在Ruby中,专门针对这个问题进行了修改:
def isexactsqrt(v)
value = v.abs
residue = value
root = 0
onebit = 1
onebit <<= 8 while (onebit < residue)
onebit >>= 2 while (onebit > residue)
while (onebit > 0)
x = root + onebit
if (residue >= x) then
residue -= x
root = x + onebit
end
root >>= 1
onebit >>= 2
end
return (residue == 0)
end
这里有一个类似的处理方法(可能有编码风格/气味或笨拙的O/O——重要的是算法,C++不是我的母语)。在这种情况下,我们要查找残数==0:
#include <iostream>
using namespace std;
typedef unsigned long long int llint;
class ISqrt { // Integer Square Root
llint value; // Integer whose square root is required
llint root; // Result: floor(sqrt(value))
llint residue; // Result: value-root*root
llint onebit, x; // Working bit, working value
public:
ISqrt(llint v = 2) { // Constructor
Root(v); // Take the root
};
llint Root(llint r) { // Resets and calculates new square root
value = r; // Store input
residue = value; // Initialise for subtracting down
root = 0; // Clear root accumulator
onebit = 1; // Calculate start value of counter
onebit <<= (8*sizeof(llint)-2); // Set up counter bit as greatest odd power of 2
while (onebit > residue) {onebit >>= 2; }; // Shift down until just < value
while (onebit > 0) {
x = root ^ onebit; // Will check root+1bit (root bit corresponding to onebit is always zero)
if (residue >= x) { // Room to subtract?
residue -= x; // Yes - deduct from residue
root = x + onebit; // and step root
};
root >>= 1;
onebit >>= 2;
};
return root;
};
llint Residue() { // Returns residue from last calculation
return residue;
};
};
int main() {
llint big, i, q, r, v, delta;
big = 0; big = (big-1); // Kludge for "big number"
ISqrt b; // Make q sqrt generator
for ( i = big; i > 0 ; i /= 7 ) { // for several numbers
q = b.Root(i); // Get the square root
r = b.Residue(); // Get the residue
v = q*q+r; // Recalc original value
delta = v-i; // And diff, hopefully 0
cout << i << ": " << q << " ++ " << r << " V: " << v << " Delta: " << delta << "\n";
};
return 0;
};
这个问题让我很疑惑,所以我做了一些简单的编码,我在这里介绍它,因为我觉得它很有趣,很相关,但我不知道它有多有用。有一个简单的算法
a_n+1 = (a_n + x/a_n)/2
用于计算平方根,但它用于小数。我想知道,如果我只是用整数数学编码相同的算法,会发生什么。它甚至会汇聚到正确的答案上吗?我不知道,所以我写了一个程序。。。
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <math.h>
_Bool isperfectsquare(uint64_t x, uint64_t *isqrtx) {
// NOTE: isqrtx approximate for non-squares. (benchmarked at 162ns 3GHz i5)
uint32_t i;
uint64_t ai;
ai = 1 + ((x & 0xffff000000000000) >> 32) + ((x & 0xffff00000000) >> 24) + ((x & 0xffff0000) >> 16);
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = ai & 0xffffffff;
if (isqrtx != NULL) isqrtx[0] = ai;
return ai*ai == x;
}
void main() {
uint64_t x, isqrtx;
uint64_t i;
for (i=1; i<0x100000000; i++) {
if (!isperfectsquare(i*i, &isqrtx)) {
printf("Failed at %li", i);
exit(1);
}
}
printf("All OK.\n");
}
因此,事实证明,该公式的12次迭代足以为所有64位无符号长整数(完美平方)提供正确的结果,当然,非平方将返回false。
simon@simon-Inspiron-N5040:~$ time ./isqrt.bin
All OK.
real 11m37.096s
user 11m35.053s
sys 0m0.272s
因此697s/2^32约为162纳秒。实际上,该函数对于所有输入都具有相同的运行时。讨论中其他地方详细介绍的一些措施可以通过检查最后四位等来加快非正方形的速度。希望有人像我一样觉得这很有趣。
考虑到一般的比特长度(尽管我在这里使用了特定的类型),我试图设计如下的简单算法。最初需要对0,1,2或<0进行简单而明显的检查。以下是简单的,因为它不试图使用任何现有的数学函数。大多数运算符可以用逐位运算符替换。我还没有用任何基准数据进行测试。我既不是数学专家,也不是计算机算法设计专家,我很乐意看到你们指出这个问题。我知道那里有很多改进的机会。
int main()
{
unsigned int c1=0 ,c2 = 0;
unsigned int x = 0;
unsigned int p = 0;
int k1 = 0;
scanf("%d",&p);
if(p % 2 == 0) {
x = p/2;
}
else {
x = (p/2) +1;
}
while(x)
{
if((x*x) > p) {
c1 = x;
x = x/2;
}else {
c2 = x;
break;
}
}
if((p%2) != 0)
c2++;
while(c2 < c1)
{
if((c2 * c2 ) == p) {
k1 = 1;
break;
}
c2++;
}
if(k1)
printf("\n Perfect square for %d", c2);
else
printf("\n Not perfect but nearest to :%d :", c2);
return 0;
}
如果最后的X位数字是N,那么应该可以更有效地包装“不能是完美的正方形”!我将使用java 32位int,并生成足够的数据来检查数字的最后16位,即2048个十六进制int值。
...
好吧。要么我遇到了一些超出我理解范围的数论,要么我的代码中有一个错误。无论如何,以下是代码:
public static void main(String[] args) {
final int BITS = 16;
BitSet foo = new BitSet();
for(int i = 0; i< (1<<BITS); i++) {
int sq = (i*i);
sq = sq & ((1<<BITS)-1);
foo.set(sq);
}
System.out.println("int[] mayBeASquare = {");
for(int i = 0; i< 1<<(BITS-5); i++) {
int kk = 0;
for(int j = 0; j<32; j++) {
if(foo.get((i << 5) | j)) {
kk |= 1<<j;
}
}
System.out.print("0x" + Integer.toHexString(kk) + ", ");
if(i%8 == 7) System.out.println();
}
System.out.println("};");
}
结果如下:
(ed:由于pretify.js性能不佳而取消;查看修订历史以查看。)