我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:
我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。
下面是我现在做的非常简单明了的方法:
public final static boolean isPerfectSquare(long n)
{
if (n < 0)
return false;
long tst = (long)(Math.sqrt(n) + 0.5);
return tst*tst == n;
}
注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。
我尝试了不同的解决方案:
经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。
整数牛顿法
如果希望避免非整数运算,可以使用以下方法。它基本上使用了为整数运算而修改的牛顿法。
/**
* Test if the given number is a perfect square.
* @param n Must be greater than 0 and less
* than Long.MAX_VALUE.
* @return <code>true</code> if n is a perfect
* square, or <code>false</code> otherwise.
*/
public static boolean isSquare(long n)
{
long x1 = n;
long x2 = 1L;
while (x1 > x2)
{
x1 = (x1 + x2) / 2L;
x2 = n / x1;
}
return x1 == x2 && n % x1 == 0L;
}
此实现无法与使用Math.sqrt的解决方案竞争。但是,可以通过使用其他文章中描述的过滤机制来提高其性能。
sqrt调用并不完全准确,正如前面所提到的,但它很有趣,也很有启发性,因为它不会在速度方面影响其他答案。毕竟,sqrt的汇编语言指令序列很小。英特尔有一个硬件指令,我相信Java不会使用它,因为它不符合IEEE。
那么为什么速度慢呢?因为Java实际上是通过JNI调用一个C例程,而且这样做实际上比调用一个Java子程序慢,而Java子程序本身比内联调用慢。这很烦人,Java本应该想出更好的解决方案,即在必要时构建浮点库调用。哦,好吧。
在C++中,我怀疑所有复杂的替代方案都会失去速度,但我还没有检查过它们。我所做的,也是Java人会发现有用的,是一个简单的黑客,是a.Rex建议的特例测试的扩展。使用单个长值作为位数组,不检查边界。这样,您就有了64位布尔查找。
typedef unsigned long long UVLONG
UVLONG pp1,pp2;
void init2() {
for (int i = 0; i < 64; i++) {
for (int j = 0; j < 64; j++)
if (isPerfectSquare(i * 64 + j)) {
pp1 |= (1 << j);
pp2 |= (1 << i);
break;
}
}
cout << "pp1=" << pp1 << "," << pp2 << "\n";
}
inline bool isPerfectSquare5(UVLONG x) {
return pp1 & (1 << (x & 0x3F)) ? isPerfectSquare(x) : false;
}
在我的core2双人游戏机上,PerfectSquare5的程序运行时间约为1/3。我怀疑,沿着相同的路线进一步调整可能会进一步缩短平均时间,但每次检查时,你都在用更多的测试来换取更多的消除,所以你不能在这条路上走得太远。
当然,你可以用同样的方法检查高6位,而不是单独测试阴性。
请注意,我所做的只是消除可能的正方形,但当我有一个潜在的情况时,我必须调用原始的内联的isPerfectSquare。
init2例程被调用一次以初始化pp1和pp2的静态值。请注意,在我的C++实现中,我使用的是无符号long-long,因此,既然有符号,就必须使用>>>运算符。
没有内在的必要对数组进行边界检查,但Java的优化器必须很快地解决这一问题,所以我不怪他们。
这里有一个分而治之的解决方案。
如果自然数(数字)的平方根是自然数(解),您可以根据数字的位数轻松确定解的范围:
数字有1位:范围内的解=1-4数字有2位数:范围内的解=3-10数字有3位数:范围内的解=10-40数字有4位数字:范围=30-100数字有5位数:范围内的解=100-400
注意到重复了吗?
您可以在二进制搜索方法中使用此范围,以查看是否存在以下解决方案:
number == solution * solution
这是密码
这是我的类SquareRootChecker
public class SquareRootChecker {
private long number;
private long initialLow;
private long initialHigh;
public SquareRootChecker(long number) {
this.number = number;
initialLow = 1;
initialHigh = 4;
if (Long.toString(number).length() % 2 == 0) {
initialLow = 3;
initialHigh = 10;
}
for (long i = 0; i < Long.toString(number).length() / 2; i++) {
initialLow *= 10;
initialHigh *= 10;
}
if (Long.toString(number).length() % 2 == 0) {
initialLow /= 10;
initialHigh /=10;
}
}
public boolean checkSquareRoot() {
return findSquareRoot(initialLow, initialHigh, number);
}
private boolean findSquareRoot(long low, long high, long number) {
long check = low + (high - low) / 2;
if (high >= low) {
if (number == check * check) {
return true;
}
else if (number < check * check) {
high = check - 1;
return findSquareRoot(low, high, number);
}
else {
low = check + 1;
return findSquareRoot(low, high, number);
}
}
return false;
}
}
下面是一个如何使用它的示例。
long number = 1234567;
long square = number * number;
SquareRootChecker squareRootChecker = new SquareRootChecker(square);
System.out.println(square + ": " + squareRootChecker.checkSquareRoot()); //Prints "1524155677489: true"
long notSquare = square + 1;
squareRootChecker = new SquareRootChecker(notSquare);
System.out.println(notSquare + ": " + squareRootChecker.checkSquareRoot()); //Prints "1524155677490: false"