我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

这里有一个分而治之的解决方案。

如果自然数(数字)的平方根是自然数(解),您可以根据数字的位数轻松确定解的范围:

数字有1位:范围内的解=1-4数字有2位数:范围内的解=3-10数字有3位数:范围内的解=10-40数字有4位数字:范围=30-100数字有5位数:范围内的解=100-400

注意到重复了吗?

您可以在二进制搜索方法中使用此范围,以查看是否存在以下解决方案:

number == solution * solution

这是密码

这是我的类SquareRootChecker

public class SquareRootChecker {

    private long number;
    private long initialLow;
    private long initialHigh;

    public SquareRootChecker(long number) {
        this.number = number;

        initialLow = 1;
        initialHigh = 4;
        if (Long.toString(number).length() % 2 == 0) {
            initialLow = 3;
            initialHigh = 10;
        }
        for (long i = 0; i < Long.toString(number).length() / 2; i++) {
            initialLow *= 10;
            initialHigh *= 10;
        }
        if (Long.toString(number).length() % 2 == 0) {
            initialLow /= 10;
            initialHigh /=10;
        }
    }

    public boolean checkSquareRoot() {
        return findSquareRoot(initialLow, initialHigh, number);
    }

    private boolean findSquareRoot(long low, long high, long number) {
        long check = low + (high - low) / 2;
        if (high >= low) {
            if (number == check * check) {
                return true;
            }
            else if (number < check * check) {
                high = check - 1;
                return findSquareRoot(low, high, number);
            }
            else  {
                low = check + 1;
                return findSquareRoot(low, high, number);
            }
        }
        return false;
    }

}

下面是一个如何使用它的示例。

long number =  1234567;
long square = number * number;
SquareRootChecker squareRootChecker = new SquareRootChecker(square);
System.out.println(square + ": " + squareRootChecker.checkSquareRoot()); //Prints "1524155677489: true"

long notSquare = square + 1;
squareRootChecker = new SquareRootChecker(notSquare);
System.out.println(notSquare + ": " + squareRootChecker.checkSquareRoot()); //Prints "1524155677490: false"

其他回答

为了记录在案,另一种方法是使用素分解。如果分解的每个因子都是偶数,那么这个数就是一个完美的平方。所以你想要的是看看一个数是否可以分解成质数平方的乘积。当然,你不需要获得这样的分解,只是为了看看它是否存在。

首先建立一个小于2^32的素数平方表。这远远小于一个包含所有整数的表,直到这个极限。

解决方案如下:

boolean isPerfectSquare(long number)
{
    if (number < 0) return false;
    if (number < 2) return true;

    for (int i = 0; ; i++)
    {
        long square = squareTable[i];
        if (square > number) return false;
        while (number % square == 0)
        {
            number /= square;
        }
        if (number == 1) return true;
    }
}

我想这有点神秘。它所做的是在每一步中检查质数的平方除以输入数。如果这样做了,那么它将尽可能地将数字除以平方,以从素数分解中删除这个平方。如果通过这个过程,我们得到1,那么输入数是素数平方的分解。如果平方比数字本身大,那么这个平方或任何更大的平方都无法分割它,所以数字不能是素数平方的分解。

考虑到现在的sqrt是在硬件中完成的,并且需要在这里计算素数,我想这个解决方案要慢得多。但正如mrzl在他的回答中所说,它应该比sqrt的解决方案给出更好的结果,sqrt的工作时间不会超过2^54。

可能是该问题的最佳算法是快速整数平方根算法https://stackoverflow.com/a/51585204/5191852

@Kde声称牛顿法的三次迭代对于32位整数的精度为±1就足够了。当然,64位整数需要更多的迭代,可能是6或7。

static boolean isPerfectSquare (int input) {
  return Math.sqrt(input) == (int) Math.sqrt(input);
}

如果输入的平方根的整数值等于双倍值,则返回该值。这意味着它是一个整数,它将返回true。否则,将返回false。

maartinus解决方案的以下简化似乎使运行时减少了几个百分点,但我在基准测试方面做得不够好,无法产生我可以信任的基准:

long goodMask; // 0xC840C04048404040 computed below
{
    for (int i=0; i<64; ++i) goodMask |= Long.MIN_VALUE >>> (i*i);
}

public boolean isSquare(long x) {
    // This tests if the 6 least significant bits are right.
    // Moving the to be tested bit to the highest position saves us masking.
    if (goodMask << x >= 0) return false;
    // Remove an even number of trailing zeros, leaving at most one.
    x >>= (Long.numberOfTrailingZeros(x) & (-2);
    // Repeat the test on the 6 least significant remaining bits.
    if (goodMask << x >= 0 | x <= 0) return x == 0;
    // Do it in the classical way.
    // The correctness is not trivial as the conversion from long to double is lossy!
    final long tst = (long) Math.sqrt(x);
    return tst * tst == x;
}

值得检查的是,如何省略第一次测试,

if (goodMask << x >= 0) return false;

会影响性能。

关于卡马克方法,似乎只需要重复一次就很容易了,这应该会使精度位数翻倍。毕竟,这是一种极其简化的迭代方法——牛顿迭代法,具有很好的第一个猜测。

关于您当前的最佳状态,我看到了两个微观优化:

使用mod255在检查后移动检查而不是0重新排列4的除法幂,以跳过通常(75%)情况下的所有检查。

I.e:

// Divide out powers of 4 using binary search

if((n & 0x3L) == 0) {
  n >>=2;

  if((n & 0xffffffffL) == 0)
    n >>= 32;
  if((n & 0xffffL) == 0)
      n >>= 16;
  if((n & 0xffL) == 0)
      n >>= 8;
  if((n & 0xfL) == 0)
      n >>= 4;
  if((n & 0x3L) == 0)
      n >>= 2;
}

更好的方法可能是

while ((n & 0x03L) == 0) n >>= 2;

显然,了解每个检查点有多少数字被剔除是很有意思的——我更怀疑这些检查是否真正独立,这使得事情变得棘手。