我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

整数牛顿法

如果希望避免非整数运算,可以使用以下方法。它基本上使用了为整数运算而修改的牛顿法。

/**
 * Test if the given number is a perfect square.
 * @param n Must be greater than 0 and less
 *    than Long.MAX_VALUE.
 * @return <code>true</code> if n is a perfect
 *    square, or <code>false</code> otherwise.
 */
public static boolean isSquare(long n)
{
    long x1 = n;
    long x2 = 1L;

    while (x1 > x2)
    {
        x1 = (x1 + x2) / 2L;
        x2 = n / x1;
    }

    return x1 == x2 && n % x1 == 0L;
}

此实现无法与使用Math.sqrt的解决方案竞争。但是,可以通过使用其他文章中描述的过滤机制来提高其性能。

其他回答

如果速度是一个问题,为什么不将最常用的一组输入及其值划分到一个查找表中,然后执行您针对特殊情况提出的任何优化魔术算法?

你必须做一些基准测试。最佳算法将取决于输入的分布。

您的算法可能接近最佳,但在调用平方根例程之前,您可能需要快速检查以排除某些可能性。例如,通过按位“和”查看十六进制数字的最后一位。完美的正方形只能以0、1、4或9结尾,以16为底。因此,对于75%的输入(假设它们是均匀分布的),可以避免调用平方根,以换取一些非常快的位旋转。

Kip对实现十六进制技巧的以下代码进行了基准测试。当测试数字1到100000000时,此代码的运行速度是原始代码的两倍。

public final static boolean isPerfectSquare(long n)
{
    if (n < 0)
        return false;

    switch((int)(n & 0xF))
    {
    case 0: case 1: case 4: case 9:
        long tst = (long)Math.sqrt(n);
        return tst*tst == n;

    default:
        return false;
    }
}

当我在C++中测试类似的代码时,它实际上比原始代码运行得慢。然而,当我消除switch语句时,十六进制技巧再次使代码速度提高了一倍。

int isPerfectSquare(int n)
{
    int h = n & 0xF;  // h is the last hex "digit"
    if (h > 9)
        return 0;
    // Use lazy evaluation to jump out of the if statement as soon as possible
    if (h != 2 && h != 3 && h != 5 && h != 6 && h != 7 && h != 8)
    {
        int t = (int) floor( sqrt((double) n) + 0.5 );
        return t*t == n;
    }
    return 0;
}

消除switch语句对C#代码几乎没有影响。

使用牛顿的方法计算整数平方根,然后对这个数字进行平方并进行检查,这应该快得多,就像您在当前解决方案中所做的那样。牛顿方法是其他答案中提到的卡马克解的基础。你应该能够得到更快的答案,因为你只对根的整数部分感兴趣,这样你就可以更快地停止近似算法。

另一个可以尝试的优化:如果数字的数字根不以1、4、7或9这个数字不是一个完美的正方形。这可以作为在应用较慢的平方根算法之前消除60%输入的快速方法。

这个问题让我很疑惑,所以我做了一些简单的编码,我在这里介绍它,因为我觉得它很有趣,很相关,但我不知道它有多有用。有一个简单的算法

a_n+1 = (a_n + x/a_n)/2

用于计算平方根,但它用于小数。我想知道,如果我只是用整数数学编码相同的算法,会发生什么。它甚至会汇聚到正确的答案上吗?我不知道,所以我写了一个程序。。。

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <math.h>

_Bool isperfectsquare(uint64_t x, uint64_t *isqrtx) {
  // NOTE: isqrtx approximate for non-squares. (benchmarked at 162ns 3GHz i5)
  uint32_t i;
  uint64_t ai;
  ai = 1 + ((x & 0xffff000000000000) >> 32) + ((x & 0xffff00000000) >> 24) + ((x & 0xffff0000) >> 16);
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = (ai + x/ai)/2;
  ai = ai & 0xffffffff;
  if (isqrtx != NULL) isqrtx[0] = ai;
  return ai*ai == x;
}

void main() {

  uint64_t x, isqrtx;
  uint64_t i;
  for (i=1; i<0x100000000; i++) {
    if (!isperfectsquare(i*i, &isqrtx)) {
      printf("Failed at %li", i);
      exit(1);
    }
  }
  printf("All OK.\n");
} 

因此,事实证明,该公式的12次迭代足以为所有64位无符号长整数(完美平方)提供正确的结果,当然,非平方将返回false。

simon@simon-Inspiron-N5040:~$ time ./isqrt.bin 
All OK.

real    11m37.096s
user    11m35.053s
sys 0m0.272s

因此697s/2^32约为162纳秒。实际上,该函数对于所有输入都具有相同的运行时。讨论中其他地方详细介绍的一些措施可以通过检查最后四位等来加快非正方形的速度。希望有人像我一样觉得这很有趣。

不知道最快,但最简单的方法是以正常方式取平方根,将结果乘以自身,看看它是否与原始值匹配。

由于我们在这里讨论的是整数,fasted可能涉及一个集合,您可以在其中进行查找。