我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

标签中提到了项目Euler,其中的许多问题需要检查数字>>2^64。当您使用80字节缓冲区时,上面提到的大多数优化都不容易工作。

我使用了javaBigInteger和稍微修改过的Newton方法,它对整数更有效。问题是,精确的平方n^2收敛到(n-1)而不是n,因为n^2-1=(n-1)(n+1),最终误差仅比最终除数低一步,算法终止。在计算错误之前,通过在原始参数中添加一个参数很容易解决。(为立方体根等添加两个)

这个算法的一个优点是,你可以立即判断出这个数字是否是一个完美的平方-牛顿方法中的最终误差(不是校正)将为零。一个简单的修改也可以让您快速计算floor(sqrt(x)),而不是最接近的整数。这对于几个Euler问题很方便。

其他回答

我喜欢对一些输入使用几乎正确的方法。这是一个“偏移”更高的版本。代码似乎有效,并通过了我的简单测试用例。

只需替换您的:

if(n < 410881L){...}

使用此代码:

if (n < 11043908100L) {
    //John Carmack hack, converted to Java.
    // See: http://www.codemaestro.com/reviews/9
    int i;
    float x2, y;

    x2 = n * 0.5F;
    y = n;
    i = Float.floatToRawIntBits(y);
    //using the magic number from 
    //http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf
    //since it more accurate
    i = 0x5f375a86 - (i >> 1);
    y = Float.intBitsToFloat(i);
    y = y * (1.5F - (x2 * y * y));
    y = y * (1.5F - (x2 * y * y)); //Newton iteration, more accurate

    sqrt = Math.round(1.0F / y);
} else {
    //Carmack hack gives incorrect answer for n >= 11043908100.
    sqrt = (long) Math.sqrt(n);
}

如果速度是一个问题,为什么不将最常用的一组输入及其值划分到一个查找表中,然后执行您针对特殊情况提出的任何优化魔术算法?

用牛顿法计算平方根的速度快得惊人。。。只要起始值是合理的。然而,没有合理的起始值,在实践中,我们以平分和对数(2^64)行为结束。要真正做到快速,我们需要一种快速的方法来获得一个合理的初始值,这意味着我们需要进入机器语言。如果一个处理器在奔腾中提供了一个像POPCNT这样的指令,它对前导零进行计数,我们可以使用它来获得一个具有一半有效位的起始值。小心地,我们可以找到一个固定数量的牛顿步数,这将总是足够的。(因此,前面提到了需要循环并具有非常快的执行。)

第二种解决方案是通过浮点设备,它可能具有快速的sqrt计算(如i87协处理器)。即使通过exp()和log()进行偏移,也可能比牛顿退化为二进制搜索更快。这有一个棘手的方面,即依赖于处理器的分析,以确定后续是否需要改进。

第三种解决方案解决了一个稍有不同的问题,但很值得一提,因为问题中描述了情况。如果你想为稍有不同的数字计算很多平方根,你可以使用牛顿迭代,如果你从来没有重新初始化起始值,但只需将其保留在之前的计算停止的地方。我已经在至少一个欧拉问题中成功地使用了这一方法。

当观察到正方形的最后n位时,我检查了所有可能的结果。通过连续检查更多位,可以消除多达5/6的输入。我实际上是为了实现费马的因子分解算法而设计的,而且速度非常快。

public static boolean isSquare(final long val) {
   if ((val & 2) == 2 || (val & 7) == 5) {
     return false;
   }
   if ((val & 11) == 8 || (val & 31) == 20) {
     return false;
   }

   if ((val & 47) == 32 || (val & 127) == 80) {
     return false;
   }

   if ((val & 191) == 128 || (val & 511) == 320) {
     return false;
   }

   // if((val & a == b) || (val & c == d){
   //   return false;
   // }

   if (!modSq[(int) (val % modSq.length)]) {
        return false;
   }

   final long root = (long) Math.sqrt(val);
   return root * root == val;
}

伪代码的最后一位可用于扩展测试以消除更多值。上述测试针对k=0、1、2、3

a的形式为(3<<2k)-1b的形式为(2<<2k)c的形式为(2<<2k+2)-1d的形式为(2<<2k-1)*10

它首先测试它是否具有幂模为2的平方残差,然后根据最终模量进行测试,然后使用Math.sqrt进行最终测试。我从最上面的帖子中提出了这个想法,并试图扩展它。我感谢任何评论或建议。

更新:使用模数(modSq)和44352的模数基数的测试,我的测试在OP更新中的96%的时间内运行,最多可达1000000000。

有人指出,完美正方形的最后d位只能取某些值。数字n的最后d位(以b为基数)与n除以bd时的余数相同,即C符号n%pow(b,d)。

这可以推广到任何模数m,即n%m可以用来排除某些百分比的数字是完全平方。您当前使用的模数是64,这允许12,即19%的余数作为可能的平方。通过一点编码,我找到了模数110880,它只允许2016,即1.8%的余数作为可能的平方。因此,根据模数运算(即除法)和查找表与机器上的平方根的成本,使用这个模数可能会更快。

顺便说一句,如果Java有办法为查找表存储一个压缩的位数组,那么不要使用它。现在110880个32位字的RAM不多,提取一个机器字将比提取一个位更快。