我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:
我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。
下面是我现在做的非常简单明了的方法:
public final static boolean isPerfectSquare(long n)
{
if (n < 0)
return false;
long tst = (long)(Math.sqrt(n) + 0.5);
return tst*tst == n;
}
注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。
我尝试了不同的解决方案:
经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。
我在想我在数值分析课程中度过的可怕时光。
然后我记得,在Quake源代码中,有一个函数围绕着“网络”旋转:
float Q_rsqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> 1 ); // wtf?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
#ifndef Q3_VM
#ifdef __linux__
assert( !isnan(y) ); // bk010122 - FPE?
#endif
#endif
return y;
}
它基本上使用牛顿近似函数(记不清确切的名字)计算平方根。
它应该是可用的,甚至可能更快,它来自一个非凡的id软件的游戏!
它是用C++编写的,但一旦你有了这样的想法,在Java中重用同样的技术应该不会太难:
我最初在以下位置找到它:http://www.codemaestro.com/reviews/9
牛顿的方法在维基百科上解释:http://en.wikipedia.org/wiki/Newton%27s_method
您可以通过链接了解更多的工作原理,但如果您不太在意,那么这大概是我在阅读博客和参加数值分析课程时所记得的:
*(long*)&y基本上是一个快速转换为long的函数,因此整数运算可以应用于原始字节。0x5f3759df-(i>>1);line是近似函数的预先计算的种子值。*(float*)-i将值转换回浮点。y=y*(three-half-(x2*y*y))行基本上再次迭代函数上的值。
在结果上迭代函数的次数越多,逼近函数给出的值就越精确。在Quake的案例中,一次迭代“足够好”,但如果不是为了你。。。然后您可以添加所需的迭代次数。
这应该更快,因为它减少了在简单平方根中执行的除法运算的数量(实际上是一个*0.5F乘法运算),并用一些固定数量的乘法运算代替。
关于卡马克方法,似乎只需要重复一次就很容易了,这应该会使精度位数翻倍。毕竟,这是一种极其简化的迭代方法——牛顿迭代法,具有很好的第一个猜测。
关于您当前的最佳状态,我看到了两个微观优化:
使用mod255在检查后移动检查而不是0重新排列4的除法幂,以跳过通常(75%)情况下的所有检查。
I.e:
// Divide out powers of 4 using binary search
if((n & 0x3L) == 0) {
n >>=2;
if((n & 0xffffffffL) == 0)
n >>= 32;
if((n & 0xffffL) == 0)
n >>= 16;
if((n & 0xffL) == 0)
n >>= 8;
if((n & 0xfL) == 0)
n >>= 4;
if((n & 0x3L) == 0)
n >>= 2;
}
更好的方法可能是
while ((n & 0x03L) == 0) n >>= 2;
显然,了解每个检查点有多少数字被剔除是很有意思的——我更怀疑这些检查是否真正独立,这使得事情变得棘手。
这个问题让我很疑惑,所以我做了一些简单的编码,我在这里介绍它,因为我觉得它很有趣,很相关,但我不知道它有多有用。有一个简单的算法
a_n+1 = (a_n + x/a_n)/2
用于计算平方根,但它用于小数。我想知道,如果我只是用整数数学编码相同的算法,会发生什么。它甚至会汇聚到正确的答案上吗?我不知道,所以我写了一个程序。。。
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <math.h>
_Bool isperfectsquare(uint64_t x, uint64_t *isqrtx) {
// NOTE: isqrtx approximate for non-squares. (benchmarked at 162ns 3GHz i5)
uint32_t i;
uint64_t ai;
ai = 1 + ((x & 0xffff000000000000) >> 32) + ((x & 0xffff00000000) >> 24) + ((x & 0xffff0000) >> 16);
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = ai & 0xffffffff;
if (isqrtx != NULL) isqrtx[0] = ai;
return ai*ai == x;
}
void main() {
uint64_t x, isqrtx;
uint64_t i;
for (i=1; i<0x100000000; i++) {
if (!isperfectsquare(i*i, &isqrtx)) {
printf("Failed at %li", i);
exit(1);
}
}
printf("All OK.\n");
}
因此,事实证明,该公式的12次迭代足以为所有64位无符号长整数(完美平方)提供正确的结果,当然,非平方将返回false。
simon@simon-Inspiron-N5040:~$ time ./isqrt.bin
All OK.
real 11m37.096s
user 11m35.053s
sys 0m0.272s
因此697s/2^32约为162纳秒。实际上,该函数对于所有输入都具有相同的运行时。讨论中其他地方详细介绍的一些措施可以通过检查最后四位等来加快非正方形的速度。希望有人像我一样觉得这很有趣。
我参加聚会已经很晚了,但我希望能提供一个更好的答案;更短,(假设我的基准是正确的)也更快。
long goodMask; // 0xC840C04048404040 computed below
{
for (int i=0; i<64; ++i) goodMask |= Long.MIN_VALUE >>> (i*i);
}
public boolean isSquare(long x) {
// This tests if the 6 least significant bits are right.
// Moving the to be tested bit to the highest position saves us masking.
if (goodMask << x >= 0) return false;
final int numberOfTrailingZeros = Long.numberOfTrailingZeros(x);
// Each square ends with an even number of zeros.
if ((numberOfTrailingZeros & 1) != 0) return false;
x >>= numberOfTrailingZeros;
// Now x is either 0 or odd.
// In binary each odd square ends with 001.
// Postpone the sign test until now; handle zero in the branch.
if ((x&7) != 1 | x <= 0) return x == 0;
// Do it in the classical way.
// The correctness is not trivial as the conversion from long to double is lossy!
final long tst = (long) Math.sqrt(x);
return tst * tst == x;
}
第一个测试很快捕捉到大多数非正方形。它使用一个长的64项表,因此没有数组访问成本(间接和边界检查)。对于均匀随机的长,有81.25%的概率在这里结束。
第二个测试捕获因式分解中奇数为2的所有数字。Long.numberOfTrailingZeros方法非常快,因为它被JIT编译成一条i86指令。
删除尾随零后,第三个测试处理以二进制形式的011、101或111结尾的数字,这些数字不是完美的正方形。它还关心负数,也处理0。
最后的测试是双倍算术。由于double只有53位尾数,从long到double的转换包括大值的舍入。尽管如此,测试是正确的(除非证明是错误的)。
试图结合mod255的想法并不成功。