我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

sqrt调用并不完全准确,正如前面所提到的,但它很有趣,也很有启发性,因为它不会在速度方面影响其他答案。毕竟,sqrt的汇编语言指令序列很小。英特尔有一个硬件指令,我相信Java不会使用它,因为它不符合IEEE。

那么为什么速度慢呢?因为Java实际上是通过JNI调用一个C例程,而且这样做实际上比调用一个Java子程序慢,而Java子程序本身比内联调用慢。这很烦人,Java本应该想出更好的解决方案,即在必要时构建浮点库调用。哦,好吧。

在C++中,我怀疑所有复杂的替代方案都会失去速度,但我还没有检查过它们。我所做的,也是Java人会发现有用的,是一个简单的黑客,是a.Rex建议的特例测试的扩展。使用单个长值作为位数组,不检查边界。这样,您就有了64位布尔查找。

typedef unsigned long long UVLONG
UVLONG pp1,pp2;

void init2() {
  for (int i = 0; i < 64; i++) {
    for (int j = 0; j < 64; j++)
      if (isPerfectSquare(i * 64 + j)) {
    pp1 |= (1 << j);
    pp2 |= (1 << i);
    break;
      }
   }
   cout << "pp1=" << pp1 << "," << pp2 << "\n";  
}


inline bool isPerfectSquare5(UVLONG x) {
  return pp1 & (1 << (x & 0x3F)) ? isPerfectSquare(x) : false;
}

在我的core2双人游戏机上,PerfectSquare5的程序运行时间约为1/3。我怀疑,沿着相同的路线进一步调整可能会进一步缩短平均时间,但每次检查时,你都在用更多的测试来换取更多的消除,所以你不能在这条路上走得太远。

当然,你可以用同样的方法检查高6位,而不是单独测试阴性。

请注意,我所做的只是消除可能的正方形,但当我有一个潜在的情况时,我必须调用原始的内联的isPerfectSquare。

init2例程被调用一次以初始化pp1和pp2的静态值。请注意,在我的C++实现中,我使用的是无符号long-long,因此,既然有符号,就必须使用>>>运算符。

没有内在的必要对数组进行边界检查,但Java的优化器必须很快地解决这一问题,所以我不怪他们。

其他回答

当观察到正方形的最后n位时,我检查了所有可能的结果。通过连续检查更多位,可以消除多达5/6的输入。我实际上是为了实现费马的因子分解算法而设计的,而且速度非常快。

public static boolean isSquare(final long val) {
   if ((val & 2) == 2 || (val & 7) == 5) {
     return false;
   }
   if ((val & 11) == 8 || (val & 31) == 20) {
     return false;
   }

   if ((val & 47) == 32 || (val & 127) == 80) {
     return false;
   }

   if ((val & 191) == 128 || (val & 511) == 320) {
     return false;
   }

   // if((val & a == b) || (val & c == d){
   //   return false;
   // }

   if (!modSq[(int) (val % modSq.length)]) {
        return false;
   }

   final long root = (long) Math.sqrt(val);
   return root * root == val;
}

伪代码的最后一位可用于扩展测试以消除更多值。上述测试针对k=0、1、2、3

a的形式为(3<<2k)-1b的形式为(2<<2k)c的形式为(2<<2k+2)-1d的形式为(2<<2k-1)*10

它首先测试它是否具有幂模为2的平方残差,然后根据最终模量进行测试,然后使用Math.sqrt进行最终测试。我从最上面的帖子中提出了这个想法,并试图扩展它。我感谢任何评论或建议。

更新:使用模数(modSq)和44352的模数基数的测试,我的测试在OP更新中的96%的时间内运行,最多可达1000000000。

这是我能想到的最快的Java实现,使用了本线程中其他人建议的技术组合。

Mod-256测试不精确的mod-3465测试(避免以某些误报为代价的整数除法)浮点平方根,舍入并与输入值比较

我也尝试了这些修改,但它们对性能没有帮助:

附加mod-255测试将输入值除以4的幂快速逆平方根(要处理高N值,需要3次迭代,足以使其比硬件平方根函数慢。)

public class SquareTester {

    public static boolean isPerfectSquare(long n) {
        if (n < 0) {
            return false;
        } else {
            switch ((byte) n) {
            case -128: case -127: case -124: case -119: case -112:
            case -111: case -103: case  -95: case  -92: case  -87:
            case  -79: case  -71: case  -64: case  -63: case  -60:
            case  -55: case  -47: case  -39: case  -31: case  -28:
            case  -23: case  -15: case   -7: case    0: case    1:
            case    4: case    9: case   16: case   17: case   25:
            case   33: case   36: case   41: case   49: case   57:
            case   64: case   65: case   68: case   73: case   81:
            case   89: case   97: case  100: case  105: case  113:
            case  121:
                long i = (n * INV3465) >>> 52;
                if (! good3465[(int) i]) {
                    return false;
                } else {
                    long r = round(Math.sqrt(n));
                    return r*r == n; 
                }
            default:
                return false;
            }
        }
    }

    private static int round(double x) {
        return (int) Double.doubleToRawLongBits(x + (double) (1L << 52));
    }

    /** 3465<sup>-1</sup> modulo 2<sup>64</sup> */
    private static final long INV3465 = 0x8ffed161732e78b9L;

    private static final boolean[] good3465 =
        new boolean[0x1000];

    static {
        for (int r = 0; r < 3465; ++ r) {
            int i = (int) ((r * r * INV3465) >>> 52);
            good3465[i] = good3465[i+1] = true;
        }
    }

}

你应该从一开始就去掉N的2次方部分。

第二次编辑下面m的神奇表达式应该是

m = N - (N & (N-1));

而不是书面的

第二次编辑结束

m = N & (N-1); // the lawest bit of N
N /= m;
byte = N & 0x0F;
if ((m % 2) || (byte !=1 && byte !=9))
  return false;

第一次编辑:

轻微改进:

m = N & (N-1); // the lawest bit of N
N /= m;
if ((m % 2) || (N & 0x07 != 1))
  return false;

第一次编辑结束

现在像往常一样继续。这样,当你到达浮点部分时,你已经去掉了所有2次方部分为奇数(大约一半)的数字,然后你只考虑剩下的1/8。也就是说,你在6%的数字上运行浮点部分。

使用牛顿的方法计算整数平方根,然后对这个数字进行平方并进行检查,这应该快得多,就像您在当前解决方案中所做的那样。牛顿方法是其他答案中提到的卡马克解的基础。你应该能够得到更快的答案,因为你只对根的整数部分感兴趣,这样你就可以更快地停止近似算法。

另一个可以尝试的优化:如果数字的数字根不以1、4、7或9这个数字不是一个完美的正方形。这可以作为在应用较慢的平方根算法之前消除60%输入的快速方法。

如果最后的X位数字是N,那么应该可以更有效地包装“不能是完美的正方形”!我将使用java 32位int,并生成足够的数据来检查数字的最后16位,即2048个十六进制int值。

...

好吧。要么我遇到了一些超出我理解范围的数论,要么我的代码中有一个错误。无论如何,以下是代码:

public static void main(String[] args) {
    final int BITS = 16;

    BitSet foo = new BitSet();

    for(int i = 0; i< (1<<BITS); i++) {
        int sq = (i*i);
        sq = sq & ((1<<BITS)-1);
        foo.set(sq);
    }

    System.out.println("int[] mayBeASquare = {");

    for(int i = 0; i< 1<<(BITS-5); i++) {
        int kk = 0;
        for(int j = 0; j<32; j++) {
            if(foo.get((i << 5) | j)) {
                kk |= 1<<j;
            }
        }
        System.out.print("0x" + Integer.toHexString(kk) + ", ");
        if(i%8 == 7) System.out.println();
    }
    System.out.println("};");
}

结果如下:

(ed:由于pretify.js性能不佳而取消;查看修订历史以查看。)