我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

你必须做一些基准测试。最佳算法将取决于输入的分布。

您的算法可能接近最佳,但在调用平方根例程之前,您可能需要快速检查以排除某些可能性。例如,通过按位“和”查看十六进制数字的最后一位。完美的正方形只能以0、1、4或9结尾,以16为底。因此,对于75%的输入(假设它们是均匀分布的),可以避免调用平方根,以换取一些非常快的位旋转。

Kip对实现十六进制技巧的以下代码进行了基准测试。当测试数字1到100000000时,此代码的运行速度是原始代码的两倍。

public final static boolean isPerfectSquare(long n)
{
    if (n < 0)
        return false;

    switch((int)(n & 0xF))
    {
    case 0: case 1: case 4: case 9:
        long tst = (long)Math.sqrt(n);
        return tst*tst == n;

    default:
        return false;
    }
}

当我在C++中测试类似的代码时,它实际上比原始代码运行得慢。然而,当我消除switch语句时,十六进制技巧再次使代码速度提高了一倍。

int isPerfectSquare(int n)
{
    int h = n & 0xF;  // h is the last hex "digit"
    if (h > 9)
        return 0;
    // Use lazy evaluation to jump out of the if statement as soon as possible
    if (h != 2 && h != 3 && h != 5 && h != 6 && h != 7 && h != 8)
    {
        int t = (int) floor( sqrt((double) n) + 0.5 );
        return t*t == n;
    }
    return 0;
}

消除switch语句对C#代码几乎没有影响。

其他回答

我对这个线程中的几个算法进行了自己的分析,得出了一些新的结果。你可以在这个答案的编辑历史中看到这些旧结果,但它们并不准确,因为我犯了一个错误,浪费了时间分析了几个不接近的算法。然而,从几个不同的答案中吸取教训,我现在有两个算法可以击败这个线程的“赢家”。以下是我与其他人不同的核心:

// This is faster because a number is divisible by 2^4 or more only 6% of the time
// and more than that a vanishingly small percentage.
while((x & 0x3) == 0) x >>= 2;
// This is effectively the same as the switch-case statement used in the original
// answer. 
if((x & 0x7) != 1) return false;

然而,这条简单的行(大多数时候添加一条或两条非常快的指令)将switch-case语句大大简化为一条if语句。然而,如果许多被测试的数字具有两个因素的显著幂,则可以增加运行时。

以下算法如下:

互联网-Kip发布的答案Durron-我使用一次通过答案作为基础的修改答案DurronTwo-我使用两遍答案(由@JohnnyHeggheim)进行了修改,并进行了一些其他轻微修改。

如果数字是使用Math.abs(java.util.Random.netLong())生成的,下面是一个示例运行时

 0% Scenario{vm=java, trial=0, benchmark=Internet} 39673.40 ns; ?=378.78 ns @ 3 trials
33% Scenario{vm=java, trial=0, benchmark=Durron} 37785.75 ns; ?=478.86 ns @ 10 trials
67% Scenario{vm=java, trial=0, benchmark=DurronTwo} 35978.10 ns; ?=734.10 ns @ 10 trials

benchmark   us linear runtime
 Internet 39.7 ==============================
   Durron 37.8 ============================
DurronTwo 36.0 ===========================

vm: java
trial: 0

这里是一个示例运行时,如果它只在前一百万个longs上运行:

 0% Scenario{vm=java, trial=0, benchmark=Internet} 2933380.84 ns; ?=56939.84 ns @ 10 trials
33% Scenario{vm=java, trial=0, benchmark=Durron} 2243266.81 ns; ?=50537.62 ns @ 10 trials
67% Scenario{vm=java, trial=0, benchmark=DurronTwo} 3159227.68 ns; ?=10766.22 ns @ 3 trials

benchmark   ms linear runtime
 Internet 2.93 ===========================
   Durron 2.24 =====================
DurronTwo 3.16 ==============================

vm: java
trial: 0

正如你所看到的,DurronTwo在大输入方面做得更好,因为它经常使用魔术,但与第一个算法和Math.sqrt相比,它受到了打击,因为数字要小得多。同时,更简单的Durron是一个巨大的赢家,因为在前100万个数字中,它不必多次除以4。

这是Durron:

public final static boolean isPerfectSquareDurron(long n) {
    if(n < 0) return false;
    if(n == 0) return true;

    long x = n;
    // This is faster because a number is divisible by 16 only 6% of the time
    // and more than that a vanishingly small percentage.
    while((x & 0x3) == 0) x >>= 2;
    // This is effectively the same as the switch-case statement used in the original
    // answer. 
    if((x & 0x7) == 1) {

        long sqrt;
        if(x < 410881L)
        {
            int i;
            float x2, y;

            x2 = x * 0.5F;
            y  = x;
            i  = Float.floatToRawIntBits(y);
            i  = 0x5f3759df - ( i >> 1 );
            y  = Float.intBitsToFloat(i);
            y  = y * ( 1.5F - ( x2 * y * y ) );

            sqrt = (long)(1.0F/y);
        } else {
            sqrt = (long) Math.sqrt(x);
        }
        return sqrt*sqrt == x;
    }
    return false;
}

还有DurronTwo

public final static boolean isPerfectSquareDurronTwo(long n) {
    if(n < 0) return false;
    // Needed to prevent infinite loop
    if(n == 0) return true;

    long x = n;
    while((x & 0x3) == 0) x >>= 2;
    if((x & 0x7) == 1) {
        long sqrt;
        if (x < 41529141369L) {
            int i;
            float x2, y;

            x2 = x * 0.5F;
            y = x;
            i = Float.floatToRawIntBits(y);
            //using the magic number from 
            //http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf
            //since it more accurate
            i = 0x5f375a86 - (i >> 1);
            y = Float.intBitsToFloat(i);
            y = y * (1.5F - (x2 * y * y));
            y = y * (1.5F - (x2 * y * y)); //Newton iteration, more accurate
            sqrt = (long) ((1.0F/y) + 0.2);
        } else {
            //Carmack hack gives incorrect answer for n >= 41529141369.
            sqrt = (long) Math.sqrt(x);
        }
        return sqrt*sqrt == x;
    }
    return false;
}

还有我的基准线束:(需要谷歌卡尺0.1-rc5)

public class SquareRootBenchmark {
    public static class Benchmark1 extends SimpleBenchmark {
        private static final int ARRAY_SIZE = 10000;
        long[] trials = new long[ARRAY_SIZE];

        @Override
        protected void setUp() throws Exception {
            Random r = new Random();
            for (int i = 0; i < ARRAY_SIZE; i++) {
                trials[i] = Math.abs(r.nextLong());
            }
        }


        public int timeInternet(int reps) {
            int trues = 0;
            for(int i = 0; i < reps; i++) {
                for(int j = 0; j < ARRAY_SIZE; j++) {
                    if(SquareRootAlgs.isPerfectSquareInternet(trials[j])) trues++;
                }
            }

            return trues;   
        }

        public int timeDurron(int reps) {
            int trues = 0;
            for(int i = 0; i < reps; i++) {
                for(int j = 0; j < ARRAY_SIZE; j++) {
                    if(SquareRootAlgs.isPerfectSquareDurron(trials[j])) trues++;
                }
            }

            return trues;   
        }

        public int timeDurronTwo(int reps) {
            int trues = 0;
            for(int i = 0; i < reps; i++) {
                for(int j = 0; j < ARRAY_SIZE; j++) {
                    if(SquareRootAlgs.isPerfectSquareDurronTwo(trials[j])) trues++;
                }
            }

            return trues;   
        }
    }

    public static void main(String... args) {
        Runner.main(Benchmark1.class, args);
    }
}

更新:我做了一个新的算法,在某些情况下更快,在其他情况下更慢,我根据不同的输入获得了不同的基准。如果我们计算模0xFFFFFF=3 x 3 x 5 x 7 x 13 x 17 x 241,我们可以消除97.82%的非平方数。这可以(某种程度上)在一行中完成,有5个按位操作:

if (!goodLookupSquares[(int) ((n & 0xFFFFFFl) + ((n >> 24) & 0xFFFFFFl) + (n >> 48))]) return false;

结果索引是1)残差,2)残差+0xFFFFFF,或3)残差+0x1FFFFFE。当然,我们需要有一个模为0xFFFFFF的残数的查找表,它大约是一个3mb的文件(在本例中存储为ascii文本十进制数字,不是最佳的,但使用ByteBuffer等显然可以改进。但由于这是预计算,所以没什么大不了的。您可以在这里找到文件(或自己生成):

public final static boolean isPerfectSquareDurronThree(long n) {
    if(n < 0) return false;
    if(n == 0) return true;

    long x = n;
    while((x & 0x3) == 0) x >>= 2;
    if((x & 0x7) == 1) {
        if (!goodLookupSquares[(int) ((n & 0xFFFFFFl) + ((n >> 24) & 0xFFFFFFl) + (n >> 48))]) return false;
        long sqrt;
        if(x < 410881L)
        {
            int i;
            float x2, y;

            x2 = x * 0.5F;
            y  = x;
            i  = Float.floatToRawIntBits(y);
            i  = 0x5f3759df - ( i >> 1 );
            y  = Float.intBitsToFloat(i);
            y  = y * ( 1.5F - ( x2 * y * y ) );

            sqrt = (long)(1.0F/y);
        } else {
            sqrt = (long) Math.sqrt(x);
        }
        return sqrt*sqrt == x;
    }
    return false;
}

我将其加载到布尔数组中,如下所示:

private static boolean[] goodLookupSquares = null;

public static void initGoodLookupSquares() throws Exception {
    Scanner s = new Scanner(new File("24residues_squares.txt"));

    goodLookupSquares = new boolean[0x1FFFFFE];

    while(s.hasNextLine()) {
        int residue = Integer.valueOf(s.nextLine());
        goodLookupSquares[residue] = true;
        goodLookupSquares[residue + 0xFFFFFF] = true;
        goodLookupSquares[residue + 0x1FFFFFE] = true;
    }

    s.close();
}

示例运行时。在我参加的每一次测试中,它都击败了德隆(第一版)。

 0% Scenario{vm=java, trial=0, benchmark=Internet} 40665.77 ns; ?=566.71 ns @ 10 trials
33% Scenario{vm=java, trial=0, benchmark=Durron} 38397.60 ns; ?=784.30 ns @ 10 trials
67% Scenario{vm=java, trial=0, benchmark=DurronThree} 36171.46 ns; ?=693.02 ns @ 10 trials

  benchmark   us linear runtime
   Internet 40.7 ==============================
     Durron 38.4 ============================
DurronThree 36.2 ==========================

vm: java
trial: 0

有人指出,完美正方形的最后d位只能取某些值。数字n的最后d位(以b为基数)与n除以bd时的余数相同,即C符号n%pow(b,d)。

这可以推广到任何模数m,即n%m可以用来排除某些百分比的数字是完全平方。您当前使用的模数是64,这允许12,即19%的余数作为可能的平方。通过一点编码,我找到了模数110880,它只允许2016,即1.8%的余数作为可能的平方。因此,根据模数运算(即除法)和查找表与机器上的平方根的成本,使用这个模数可能会更快。

顺便说一句,如果Java有办法为查找表存储一个压缩的位数组,那么不要使用它。现在110880个32位字的RAM不多,提取一个机器字将比提取一个位更快。

如果你做了一个二进制斩试图找到“正确”的平方根,你可以很容易地检测到你得到的值是否足够接近:

(n+1)^2 = n^2 + 2n + 1
(n-1)^2 = n^2 - 2n + 1

因此,在计算了n^2之后,选项如下:

n ^2=目标:已完成,返回truen^2+2n+1>target>n^2:你很接近,但并不完美:return falsen^2-2n+1<目标<n^2:同上目标<n^2-2n+1:低位n上的二进制斩波目标>n^2+2n+1:较高n上的二进制斩波

(抱歉,这使用n作为您当前的猜测,并将其作为参数的目标。对此感到困惑深表歉意!)

我不知道这是否会更快,但值得一试。

编辑:二进制斩不必接受整个整数范围,或者(2^x)^2=2^(2x),所以一旦你在目标中找到了最高位(这可以用一个小技巧来完成;我完全忘记了怎么做),你就可以快速得到一系列可能的答案。请注意,一个简单的二进制斩仍然只需要31或32次迭代。

我在想我在数值分析课程中度过的可怕时光。

然后我记得,在Quake源代码中,有一个函数围绕着“网络”旋转:

float Q_rsqrt( float number )
{
  long i;
  float x2, y;
  const float threehalfs = 1.5F;

  x2 = number * 0.5F;
  y  = number;
  i  = * ( long * ) &y;  // evil floating point bit level hacking
  i  = 0x5f3759df - ( i >> 1 ); // wtf?
  y  = * ( float * ) &i;
  y  = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  // y  = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed

  #ifndef Q3_VM
  #ifdef __linux__
    assert( !isnan(y) ); // bk010122 - FPE?
  #endif
  #endif
  return y;
}

它基本上使用牛顿近似函数(记不清确切的名字)计算平方根。

它应该是可用的,甚至可能更快,它来自一个非凡的id软件的游戏!

它是用C++编写的,但一旦你有了这样的想法,在Java中重用同样的技术应该不会太难:

我最初在以下位置找到它:http://www.codemaestro.com/reviews/9

牛顿的方法在维基百科上解释:http://en.wikipedia.org/wiki/Newton%27s_method

您可以通过链接了解更多的工作原理,但如果您不太在意,那么这大概是我在阅读博客和参加数值分析课程时所记得的:

*(long*)&y基本上是一个快速转换为long的函数,因此整数运算可以应用于原始字节。0x5f3759df-(i>>1);line是近似函数的预先计算的种子值。*(float*)-i将值转换回浮点。y=y*(three-half-(x2*y*y))行基本上再次迭代函数上的值。

在结果上迭代函数的次数越多,逼近函数给出的值就越精确。在Quake的案例中,一次迭代“足够好”,但如果不是为了你。。。然后您可以添加所需的迭代次数。

这应该更快,因为它减少了在简单平方根中执行的除法运算的数量(实际上是一个*0.5F乘法运算),并用一些固定数量的乘法运算代替。

我希望此功能与所有正64位有符号整数

Math.sqrt()使用double作为输入参数,因此对于大于2^53的整数,不会得到准确的结果。