我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

关于卡马克方法,似乎只需要重复一次就很容易了,这应该会使精度位数翻倍。毕竟,这是一种极其简化的迭代方法——牛顿迭代法,具有很好的第一个猜测。

关于您当前的最佳状态,我看到了两个微观优化:

使用mod255在检查后移动检查而不是0重新排列4的除法幂,以跳过通常(75%)情况下的所有检查。

I.e:

// Divide out powers of 4 using binary search

if((n & 0x3L) == 0) {
  n >>=2;

  if((n & 0xffffffffL) == 0)
    n >>= 32;
  if((n & 0xffffL) == 0)
      n >>= 16;
  if((n & 0xffL) == 0)
      n >>= 8;
  if((n & 0xfL) == 0)
      n >>= 4;
  if((n & 0x3L) == 0)
      n >>= 2;
}

更好的方法可能是

while ((n & 0x03L) == 0) n >>= 2;

显然,了解每个检查点有多少数字被剔除是很有意思的——我更怀疑这些检查是否真正独立,这使得事情变得棘手。

其他回答

我找到了一种比你的6位+卡马克+sqrt代码快35%的方法,至少在我的CPU(x86)和编程语言(C/C++)中是这样。您的结果可能会有所不同,特别是因为我不知道Java因素将如何发挥作用。

我的方法有三个方面:

首先,过滤掉显而易见的答案。这包括负数和查看最后4位。(我发现看最后六个没有帮助。)我也回答0是。(在阅读下面的代码时,请注意我的输入是int64x。)如果(x<0||(x&2)||((x&7)==5)||(x&11)==8))return false;如果(x==0)返回true;接下来,检查它是否是模255=3*5*17的平方。因为这是三个不同素数的乘积,所以只有大约1/8的模255残数是正方形。然而,根据我的经验,调用模运算符(%)的成本比获得的收益更高,因此我使用涉及255=2^8-1的位技巧来计算残差。(不管是好是坏,我没有使用从单词中读取单个字节的技巧,只使用按位和和移位。)int64 y=x;y=(y&4294967295LL)+(y>>32);y=(y&65535)+(y>>16);y=(y&255)+((y>>8)&255)=(y>>16);//此时,y介于0和511之间。更多的代码可以进一步减少它。为了实际检查残差是否为正方形,我在预先计算的表中查找答案。如果(bad255[y])return false;//然而,我只使用大小为512的表最后,尝试使用类似于Hensel引理的方法计算平方根。(我不认为它直接适用,但经过一些修改后可以使用。)在此之前,我用二进制搜索将2的所有幂除以:如果((x&4294967295LL)==0)x>>=32;如果((x&65535)==0)x>>=16;如果((x&255)==0)x>>=8;如果((x&15)==0)x>>=4;如果((x&3)==0)x>>=2;在这一点上,我们的数字是一个正方形,它必须是1模8。如果((x&7)!=1)return false;亨塞尔引理的基本结构如下。(注意:未经测试的代码;如果不起作用,请尝试t=2或8。)int64 t=4,r=1;t<<=1;r+=((x-r*r)&t)>>1;t<<=1;r+=((x-r*r)&t)>>1;t<<=1;r+=((x-r*r)&t)>>1;//重复此操作,直到t为2^33左右。如果需要,请使用循环。其思想是,在每次迭代时,将一位加到r上,即x的“当前”平方根;每个平方根都是精确的模2的一个越来越大的幂,即t/2。最后,r和t/2-r将是x模t/2的平方根。(注意,如果r是x的平方根,那么-r也是如此。即使是模数,这也是正确的,但要注意,对某些数进行模运算,事物可能会有2个以上的平方根;值得注意的是,这包括2的幂。)因为我们的实际平方根小于2^32,所以在这一点上,我们实际上可以检查r或t/2-r是否是真正的平方根。在我的实际代码中,我使用了以下修改的循环:整数64 r,t,z;r=开始[(x>>3)&1023];做{z=x-r*r;如果(z==0)返回true;如果(z<0)return false;t=z&(-z);r+=(z&t)>>1;如果(r>(t>>1))r=t-r;}而(t<=(1LL<<33));这里的加速是通过三种方式获得的:预先计算的开始值(相当于循环的约10次迭代)、提前退出循环以及跳过一些t值。对于最后一部分,我看z=r-x*x,用一个小技巧将t设为2除以z的最大幂。这允许我跳过t值,这些值无论如何都不会影响r的值。在我的例子中,预先计算的起始值选取模8192的“最小正”平方根。

Even if this code doesn't work faster for you, I hope you enjoy some of the ideas it contains. Complete, tested code follows, including the precomputed tables.
typedef signed long long int int64;

int start[1024] =
{1,3,1769,5,1937,1741,7,1451,479,157,9,91,945,659,1817,11,
1983,707,1321,1211,1071,13,1479,405,415,1501,1609,741,15,339,1703,203,
129,1411,873,1669,17,1715,1145,1835,351,1251,887,1573,975,19,1127,395,
1855,1981,425,453,1105,653,327,21,287,93,713,1691,1935,301,551,587,
257,1277,23,763,1903,1075,1799,1877,223,1437,1783,859,1201,621,25,779,
1727,573,471,1979,815,1293,825,363,159,1315,183,27,241,941,601,971,
385,131,919,901,273,435,647,1493,95,29,1417,805,719,1261,1177,1163,
1599,835,1367,315,1361,1933,1977,747,31,1373,1079,1637,1679,1581,1753,1355,
513,1539,1815,1531,1647,205,505,1109,33,1379,521,1627,1457,1901,1767,1547,
1471,1853,1833,1349,559,1523,967,1131,97,35,1975,795,497,1875,1191,1739,
641,1149,1385,133,529,845,1657,725,161,1309,375,37,463,1555,615,1931,
1343,445,937,1083,1617,883,185,1515,225,1443,1225,869,1423,1235,39,1973,
769,259,489,1797,1391,1485,1287,341,289,99,1271,1701,1713,915,537,1781,
1215,963,41,581,303,243,1337,1899,353,1245,329,1563,753,595,1113,1589,
897,1667,407,635,785,1971,135,43,417,1507,1929,731,207,275,1689,1397,
1087,1725,855,1851,1873,397,1607,1813,481,163,567,101,1167,45,1831,1205,
1025,1021,1303,1029,1135,1331,1017,427,545,1181,1033,933,1969,365,1255,1013,
959,317,1751,187,47,1037,455,1429,609,1571,1463,1765,1009,685,679,821,
1153,387,1897,1403,1041,691,1927,811,673,227,137,1499,49,1005,103,629,
831,1091,1449,1477,1967,1677,697,1045,737,1117,1737,667,911,1325,473,437,
1281,1795,1001,261,879,51,775,1195,801,1635,759,165,1871,1645,1049,245,
703,1597,553,955,209,1779,1849,661,865,291,841,997,1265,1965,1625,53,
1409,893,105,1925,1297,589,377,1579,929,1053,1655,1829,305,1811,1895,139,
575,189,343,709,1711,1139,1095,277,993,1699,55,1435,655,1491,1319,331,
1537,515,791,507,623,1229,1529,1963,1057,355,1545,603,1615,1171,743,523,
447,1219,1239,1723,465,499,57,107,1121,989,951,229,1521,851,167,715,
1665,1923,1687,1157,1553,1869,1415,1749,1185,1763,649,1061,561,531,409,907,
319,1469,1961,59,1455,141,1209,491,1249,419,1847,1893,399,211,985,1099,
1793,765,1513,1275,367,1587,263,1365,1313,925,247,1371,1359,109,1561,1291,
191,61,1065,1605,721,781,1735,875,1377,1827,1353,539,1777,429,1959,1483,
1921,643,617,389,1809,947,889,981,1441,483,1143,293,817,749,1383,1675,
63,1347,169,827,1199,1421,583,1259,1505,861,457,1125,143,1069,807,1867,
2047,2045,279,2043,111,307,2041,597,1569,1891,2039,1957,1103,1389,231,2037,
65,1341,727,837,977,2035,569,1643,1633,547,439,1307,2033,1709,345,1845,
1919,637,1175,379,2031,333,903,213,1697,797,1161,475,1073,2029,921,1653,
193,67,1623,1595,943,1395,1721,2027,1761,1955,1335,357,113,1747,1497,1461,
1791,771,2025,1285,145,973,249,171,1825,611,265,1189,847,1427,2023,1269,
321,1475,1577,69,1233,755,1223,1685,1889,733,1865,2021,1807,1107,1447,1077,
1663,1917,1129,1147,1775,1613,1401,555,1953,2019,631,1243,1329,787,871,885,
449,1213,681,1733,687,115,71,1301,2017,675,969,411,369,467,295,693,
1535,509,233,517,401,1843,1543,939,2015,669,1527,421,591,147,281,501,
577,195,215,699,1489,525,1081,917,1951,2013,73,1253,1551,173,857,309,
1407,899,663,1915,1519,1203,391,1323,1887,739,1673,2011,1585,493,1433,117,
705,1603,1111,965,431,1165,1863,533,1823,605,823,1179,625,813,2009,75,
1279,1789,1559,251,657,563,761,1707,1759,1949,777,347,335,1133,1511,267,
833,1085,2007,1467,1745,1805,711,149,1695,803,1719,485,1295,1453,935,459,
1151,381,1641,1413,1263,77,1913,2005,1631,541,119,1317,1841,1773,359,651,
961,323,1193,197,175,1651,441,235,1567,1885,1481,1947,881,2003,217,843,
1023,1027,745,1019,913,717,1031,1621,1503,867,1015,1115,79,1683,793,1035,
1089,1731,297,1861,2001,1011,1593,619,1439,477,585,283,1039,1363,1369,1227,
895,1661,151,645,1007,1357,121,1237,1375,1821,1911,549,1999,1043,1945,1419,
1217,957,599,571,81,371,1351,1003,1311,931,311,1381,1137,723,1575,1611,
767,253,1047,1787,1169,1997,1273,853,1247,413,1289,1883,177,403,999,1803,
1345,451,1495,1093,1839,269,199,1387,1183,1757,1207,1051,783,83,423,1995,
639,1155,1943,123,751,1459,1671,469,1119,995,393,219,1743,237,153,1909,
1473,1859,1705,1339,337,909,953,1771,1055,349,1993,613,1393,557,729,1717,
511,1533,1257,1541,1425,819,519,85,991,1693,503,1445,433,877,1305,1525,
1601,829,809,325,1583,1549,1991,1941,927,1059,1097,1819,527,1197,1881,1333,
383,125,361,891,495,179,633,299,863,285,1399,987,1487,1517,1639,1141,
1729,579,87,1989,593,1907,839,1557,799,1629,201,155,1649,1837,1063,949,
255,1283,535,773,1681,461,1785,683,735,1123,1801,677,689,1939,487,757,
1857,1987,983,443,1327,1267,313,1173,671,221,695,1509,271,1619,89,565,
127,1405,1431,1659,239,1101,1159,1067,607,1565,905,1755,1231,1299,665,373,
1985,701,1879,1221,849,627,1465,789,543,1187,1591,923,1905,979,1241,181};

bool bad255[512] =
{0,0,1,1,0,1,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,
 1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,1,1,
 0,1,0,1,1,0,0,1,1,1,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,0,1,
 1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,
 1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,
 1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,
 1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,
 1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,
 0,0,1,1,0,1,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,
 1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,1,1,
 0,1,0,1,1,0,0,1,1,1,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,0,1,
 1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,
 1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,
 1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,
 1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,
 1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,
 0,0};

inline bool square( int64 x ) {
    // Quickfail
    if( x &lt; 0 || (x&2) || ((x & 7) == 5) || ((x & 11) == 8) )
        return false;
    if( x == 0 )
        return true;

    // Check mod 255 = 3 * 5 * 17, for fun
    int64 y = x;
    y = (y & 4294967295LL) + (y &gt;&gt; 32);
    y = (y & 65535) + (y &gt;&gt; 16);
    y = (y & 255) + ((y &gt;&gt; 8) & 255) + (y &gt;&gt; 16);
    if( bad255[y] )
        return false;

    // Divide out powers of 4 using binary search
    if((x & 4294967295LL) == 0)
        x &gt;&gt;= 32;
    if((x & 65535) == 0)
        x &gt;&gt;= 16;
    if((x & 255) == 0)
        x &gt;&gt;= 8;
    if((x & 15) == 0)
        x &gt;&gt;= 4;
    if((x & 3) == 0)
        x &gt;&gt;= 2;

    if((x & 7) != 1)
        return false;

    // Compute sqrt using something like Hensel's lemma
    int64 r, t, z;
    r = start[(x &gt;&gt; 3) & 1023];
    do {
        z = x - r * r;
        if( z == 0 )
            return true;
        if( z &lt; 0 )
            return false;
        t = z & (-z);
        r += (z & t) &gt;&gt; 1;
        if( r &gt; (t  &gt;&gt; 1) )
            r = t - r;
    } while( t &lt;= (1LL &lt;&lt; 33) );
    
    return false;
}

你应该从一开始就去掉N的2次方部分。

第二次编辑下面m的神奇表达式应该是

m = N - (N & (N-1));

而不是书面的

第二次编辑结束

m = N & (N-1); // the lawest bit of N
N /= m;
byte = N & 0x0F;
if ((m % 2) || (byte !=1 && byte !=9))
  return false;

第一次编辑:

轻微改进:

m = N & (N-1); // the lawest bit of N
N /= m;
if ((m % 2) || (N & 0x07 != 1))
  return false;

第一次编辑结束

现在像往常一样继续。这样,当你到达浮点部分时,你已经去掉了所有2次方部分为奇数(大约一半)的数字,然后你只考虑剩下的1/8。也就是说,你在6%的数字上运行浮点部分。

“我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法。”

答案令人印象深刻,但我没有看到一个简单的检查:

检查长右边的第一个数字是否为集合的成员(0,1,4,5,6,9)。如果不是,那么它不可能是一个“完美的正方形”。

eg.

4567-不能是完美的正方形。

用牛顿法计算平方根的速度快得惊人。。。只要起始值是合理的。然而,没有合理的起始值,在实践中,我们以平分和对数(2^64)行为结束。要真正做到快速,我们需要一种快速的方法来获得一个合理的初始值,这意味着我们需要进入机器语言。如果一个处理器在奔腾中提供了一个像POPCNT这样的指令,它对前导零进行计数,我们可以使用它来获得一个具有一半有效位的起始值。小心地,我们可以找到一个固定数量的牛顿步数,这将总是足够的。(因此,前面提到了需要循环并具有非常快的执行。)

第二种解决方案是通过浮点设备,它可能具有快速的sqrt计算(如i87协处理器)。即使通过exp()和log()进行偏移,也可能比牛顿退化为二进制搜索更快。这有一个棘手的方面,即依赖于处理器的分析,以确定后续是否需要改进。

第三种解决方案解决了一个稍有不同的问题,但很值得一提,因为问题中描述了情况。如果你想为稍有不同的数字计算很多平方根,你可以使用牛顿迭代,如果你从来没有重新初始化起始值,但只需将其保留在之前的计算停止的地方。我已经在至少一个欧拉问题中成功地使用了这一方法。

整数牛顿法

如果希望避免非整数运算,可以使用以下方法。它基本上使用了为整数运算而修改的牛顿法。

/**
 * Test if the given number is a perfect square.
 * @param n Must be greater than 0 and less
 *    than Long.MAX_VALUE.
 * @return <code>true</code> if n is a perfect
 *    square, or <code>false</code> otherwise.
 */
public static boolean isSquare(long n)
{
    long x1 = n;
    long x2 = 1L;

    while (x1 > x2)
    {
        x1 = (x1 + x2) / 2L;
        x2 = n / x1;
    }

    return x1 == x2 && n % x1 == 0L;
}

此实现无法与使用Math.sqrt的解决方案竞争。但是,可以通过使用其他文章中描述的过滤机制来提高其性能。