我正在寻找确定长值是否为完美平方(即其平方根是另一个整数)的最快方法:

我使用内置的Math.sqrt()以简单的方式完成了这项工作函数,但我想知道是否有一种方法可以通过将自己限制为仅限整数的域。维护查找表是不切实际的(因为平方小于263的231.5个整数)。

下面是我现在做的非常简单明了的方法:

public final static boolean isPerfectSquare(long n)
{
  if (n < 0)
    return false;

  long tst = (long)(Math.sqrt(n) + 0.5);
  return tst*tst == n;
}

注意:我在许多Project Euler问题中都使用了这个函数。因此,其他人将永远不必维护此代码。而这种微优化实际上可能会有所不同,因为挑战的一部分是在不到一分钟的时间内完成每一个算法,而在某些问题中,这个函数需要调用数百万次。


我尝试了不同的解决方案:

经过详尽的测试,我发现不需要在Math.sqrt()的结果上加0.5,至少在我的机器上是这样。快速平方根逆运算速度更快,但对于n>=410881,它给出了错误的结果。然而,正如BobbyShaftoe所建议的,我们可以在n<410881时使用FISR黑客。牛顿的方法比Math.sqrt()慢得多。这可能是因为Math.sqr()使用了类似于牛顿方法的东西,但在硬件中实现,所以比Java快得多。此外,牛顿法仍然需要使用双精度。一个经过修改的牛顿方法使用了一些技巧,因此只涉及整数数学,需要一些技巧来避免溢出(我希望这个函数可以处理所有64位有符号的正整数),而且它仍然比math.sqrt()慢。二元斩更慢。这是有意义的,因为二进制斩波平均需要16次才能找到64位数字的平方根。根据John的测试,在C++中使用or语句比使用switch更快,但在Java和C#中,or和switch之间似乎没有区别。我还尝试创建一个查找表(作为64个布尔值的私有静态数组)。然后,我只说if(lookup[(int)(n&0x3F)]){test}else return false;,而不是switch或or语句;。令我惊讶的是,这(只是稍微)慢了一些。这是因为在Java中检查数组边界。


当前回答

关于卡马克方法,似乎只需要重复一次就很容易了,这应该会使精度位数翻倍。毕竟,这是一种极其简化的迭代方法——牛顿迭代法,具有很好的第一个猜测。

关于您当前的最佳状态,我看到了两个微观优化:

使用mod255在检查后移动检查而不是0重新排列4的除法幂,以跳过通常(75%)情况下的所有检查。

I.e:

// Divide out powers of 4 using binary search

if((n & 0x3L) == 0) {
  n >>=2;

  if((n & 0xffffffffL) == 0)
    n >>= 32;
  if((n & 0xffffL) == 0)
      n >>= 16;
  if((n & 0xffL) == 0)
      n >>= 8;
  if((n & 0xfL) == 0)
      n >>= 4;
  if((n & 0x3L) == 0)
      n >>= 2;
}

更好的方法可能是

while ((n & 0x03L) == 0) n >>= 2;

显然,了解每个检查点有多少数字被剔除是很有意思的——我更怀疑这些检查是否真正独立,这使得事情变得棘手。

其他回答

关于卡马克方法,似乎只需要重复一次就很容易了,这应该会使精度位数翻倍。毕竟,这是一种极其简化的迭代方法——牛顿迭代法,具有很好的第一个猜测。

关于您当前的最佳状态,我看到了两个微观优化:

使用mod255在检查后移动检查而不是0重新排列4的除法幂,以跳过通常(75%)情况下的所有检查。

I.e:

// Divide out powers of 4 using binary search

if((n & 0x3L) == 0) {
  n >>=2;

  if((n & 0xffffffffL) == 0)
    n >>= 32;
  if((n & 0xffffL) == 0)
      n >>= 16;
  if((n & 0xffL) == 0)
      n >>= 8;
  if((n & 0xfL) == 0)
      n >>= 4;
  if((n & 0x3L) == 0)
      n >>= 2;
}

更好的方法可能是

while ((n & 0x03L) == 0) n >>= 2;

显然,了解每个检查点有多少数字被剔除是很有意思的——我更怀疑这些检查是否真正独立,这使得事情变得棘手。

如果你想要速度,考虑到整数的大小是有限的,我想最快的方法是(a)按大小划分参数(例如,按最大位集划分类别),然后对照该范围内的完美平方数组检查值。

sqrt调用并不完全准确,正如前面所提到的,但它很有趣,也很有启发性,因为它不会在速度方面影响其他答案。毕竟,sqrt的汇编语言指令序列很小。英特尔有一个硬件指令,我相信Java不会使用它,因为它不符合IEEE。

那么为什么速度慢呢?因为Java实际上是通过JNI调用一个C例程,而且这样做实际上比调用一个Java子程序慢,而Java子程序本身比内联调用慢。这很烦人,Java本应该想出更好的解决方案,即在必要时构建浮点库调用。哦,好吧。

在C++中,我怀疑所有复杂的替代方案都会失去速度,但我还没有检查过它们。我所做的,也是Java人会发现有用的,是一个简单的黑客,是a.Rex建议的特例测试的扩展。使用单个长值作为位数组,不检查边界。这样,您就有了64位布尔查找。

typedef unsigned long long UVLONG
UVLONG pp1,pp2;

void init2() {
  for (int i = 0; i < 64; i++) {
    for (int j = 0; j < 64; j++)
      if (isPerfectSquare(i * 64 + j)) {
    pp1 |= (1 << j);
    pp2 |= (1 << i);
    break;
      }
   }
   cout << "pp1=" << pp1 << "," << pp2 << "\n";  
}


inline bool isPerfectSquare5(UVLONG x) {
  return pp1 & (1 << (x & 0x3F)) ? isPerfectSquare(x) : false;
}

在我的core2双人游戏机上,PerfectSquare5的程序运行时间约为1/3。我怀疑,沿着相同的路线进一步调整可能会进一步缩短平均时间,但每次检查时,你都在用更多的测试来换取更多的消除,所以你不能在这条路上走得太远。

当然,你可以用同样的方法检查高6位,而不是单独测试阴性。

请注意,我所做的只是消除可能的正方形,但当我有一个潜在的情况时,我必须调用原始的内联的isPerfectSquare。

init2例程被调用一次以初始化pp1和pp2的静态值。请注意,在我的C++实现中,我使用的是无符号long-long,因此,既然有符号,就必须使用>>>运算符。

没有内在的必要对数组进行边界检查,但Java的优化器必须很快地解决这一问题,所以我不怪他们。

这里有一个分而治之的解决方案。

如果自然数(数字)的平方根是自然数(解),您可以根据数字的位数轻松确定解的范围:

数字有1位:范围内的解=1-4数字有2位数:范围内的解=3-10数字有3位数:范围内的解=10-40数字有4位数字:范围=30-100数字有5位数:范围内的解=100-400

注意到重复了吗?

您可以在二进制搜索方法中使用此范围,以查看是否存在以下解决方案:

number == solution * solution

这是密码

这是我的类SquareRootChecker

public class SquareRootChecker {

    private long number;
    private long initialLow;
    private long initialHigh;

    public SquareRootChecker(long number) {
        this.number = number;

        initialLow = 1;
        initialHigh = 4;
        if (Long.toString(number).length() % 2 == 0) {
            initialLow = 3;
            initialHigh = 10;
        }
        for (long i = 0; i < Long.toString(number).length() / 2; i++) {
            initialLow *= 10;
            initialHigh *= 10;
        }
        if (Long.toString(number).length() % 2 == 0) {
            initialLow /= 10;
            initialHigh /=10;
        }
    }

    public boolean checkSquareRoot() {
        return findSquareRoot(initialLow, initialHigh, number);
    }

    private boolean findSquareRoot(long low, long high, long number) {
        long check = low + (high - low) / 2;
        if (high >= low) {
            if (number == check * check) {
                return true;
            }
            else if (number < check * check) {
                high = check - 1;
                return findSquareRoot(low, high, number);
            }
            else  {
                low = check + 1;
                return findSquareRoot(low, high, number);
            }
        }
        return false;
    }

}

下面是一个如何使用它的示例。

long number =  1234567;
long square = number * number;
SquareRootChecker squareRootChecker = new SquareRootChecker(square);
System.out.println(square + ": " + squareRootChecker.checkSquareRoot()); //Prints "1524155677489: true"

long notSquare = square + 1;
squareRootChecker = new SquareRootChecker(notSquare);
System.out.println(notSquare + ": " + squareRootChecker.checkSquareRoot()); //Prints "1524155677490: false"

用牛顿法计算平方根的速度快得惊人。。。只要起始值是合理的。然而,没有合理的起始值,在实践中,我们以平分和对数(2^64)行为结束。要真正做到快速,我们需要一种快速的方法来获得一个合理的初始值,这意味着我们需要进入机器语言。如果一个处理器在奔腾中提供了一个像POPCNT这样的指令,它对前导零进行计数,我们可以使用它来获得一个具有一半有效位的起始值。小心地,我们可以找到一个固定数量的牛顿步数,这将总是足够的。(因此,前面提到了需要循环并具有非常快的执行。)

第二种解决方案是通过浮点设备,它可能具有快速的sqrt计算(如i87协处理器)。即使通过exp()和log()进行偏移,也可能比牛顿退化为二进制搜索更快。这有一个棘手的方面,即依赖于处理器的分析,以确定后续是否需要改进。

第三种解决方案解决了一个稍有不同的问题,但很值得一提,因为问题中描述了情况。如果你想为稍有不同的数字计算很多平方根,你可以使用牛顿迭代,如果你从来没有重新初始化起始值,但只需将其保留在之前的计算停止的地方。我已经在至少一个欧拉问题中成功地使用了这一方法。