这里有一个尾递归函数

def recursive_function(n, sum):
    if n < 1:
        return sum
    else:
        return recursive_function(n-1, sum+n)

c = 998
print(recursive_function(c, 0))

它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?


当前回答

资源。Setrlimit还必须用于增加堆栈大小和防止段故障

Linux内核限制了进程的堆栈。

Python将局部变量存储在解释器的堆栈上,因此递归占用解释器的堆栈空间。

如果Python解释器试图超过堆栈限制,Linux内核会使其出现分段错误。

堆栈限制大小由getrlimit和setrlimit系统调用控制。

Python通过资源模块提供了对这些系统调用的访问。

sys。例如,https://stackoverflow.com/a/3323013/895245中提到的setrecursionlimit只增加了Python解释器自身对其堆栈大小的限制,但它不会触及Linux内核对Python进程施加的限制。

示例程序:

main.py

import resource
import sys

print resource.getrlimit(resource.RLIMIT_STACK)
print sys.getrecursionlimit()
print

# Will segfault without this line.
resource.setrlimit(resource.RLIMIT_STACK, [0x10000000, resource.RLIM_INFINITY])
sys.setrecursionlimit(0x100000)

def f(i):
    print i
    sys.stdout.flush()
    f(i + 1)
f(0)

当然,如果你继续增加setrlimit,你的RAM最终会用完,这将使你的计算机由于疯狂的交换而变慢到停止,或者通过OOM杀手杀死Python。

在bash中,您可以使用以下命令查看并设置堆栈限制(单位为kb):

ulimit -s
ulimit -s 10000

我的默认值是8Mb。

参见:

在python脚本中设置stacksize Linux、Mac和Windows的硬递归限制是什么?

在Ubuntu 16.10, Python 2.7.12上测试。

其他回答

使用一种保证尾部调用优化的语言。或者使用迭代。或者,和装饰师一起玩。

我们可以使用@lru_cache decorator和setrecursionlimit()方法来实现:

import sys
from functools import lru_cache

sys.setrecursionlimit(15000)


@lru_cache(128)
def fib(n: int) -> int:
    if n == 0:
        return 0
    if n == 1:
        return 1

    return fib(n - 2) + fib(n - 1)


print(fib(14000))

输出

3002468761178461090995494179715025648692747937490792943468375429502230242942284835863402333575216217865811638730389352239181342307756720414619391217798542575996541081060501905302157019002614964717310808809478675602711440361241500732699145834377856326394037071666274321657305320804055307021019793251762830816701587386994888032362232198219843549865275880699612359275125243457132496772854886508703396643365042454333009802006384286859581649296390803003232654898464561589234445139863242606285711591746222880807391057211912655818499798720987302540712067959840802106849776547522247429904618357394771725653253559346195282601285019169360207355179223814857106405285007997547692546378757062999581657867188420995770650565521377874333085963123444258953052751461206977615079511435862879678439081175536265576977106865074099512897235100538241196445815568291377846656352979228098911566675956525644182645608178603837172227838896725425605719942300037650526231486881066037397866942013838296769284745527778439272995067231492069369130289154753132313883294398593507873555667211005422003204156154859031529462152953119957597195735953686798871131148255050140450845034240095305094449911578598539658855704158240221809528010179414493499583473568873253067921639513996596738275817909624857593693291980841303291145613566466575233283651420134915764961372875933822262953420444548349180436583183291944875599477240814774580187144637965487250578134990402443365677985388481961492444981994523034245619781853365476552719460960795929666883665704293897310201276011658074359194189359660792496027472226428571547971602259808697441435358578480589837766911684200275636889192254762678512597000452676191374475932796663842865744658264924913771676415404179920096074751516422872997665425047457428327276230059296132722787915300105002019006293320082955378715908263653377755031155794063450515731009402407584683132870206376994025920790298591144213659942668622062191441346200098342943955169522532574271644954360217472458521489671859465232568419404182043966092211744372699797375966048010775453444600153524772238401414789562651410289808994960533132759532092895779406940925252906166612153699850759933762897947175972147868784008320247586210378556711332739463277940255289047962323306946068381887446046387745247925675240182981190836264964640612069909458682443392729946084099312047752966806439331403663934969942958022237945205992581178803606156982034385347182766573351768749665172549908638337611953199808161937885366709285043276595726484068138091188914698151703122773726725261370542355162118164302728812259192476428938730724109825922331973256105091200551566581350508061922762910078528219869913214146575557249199263634241165352226570749618907050553115468306669184485910269806225894530809823102279231750061652042560772530576713148647858705369649642907780603247428680176236527220826640665659902650188140474762163503557640566711903907798932853656216227739411210513756695569391593763704981001125

functools lru_cache

我想给你一个使用内存计算斐波那契的例子,因为这将允许你使用递归计算更大的数字:

cache = {}
def fib_dp(n):
    if n in cache:
        return cache[n]
    if n == 0: return 0
    elif n == 1: return 1
    else:
        value = fib_dp(n-1) + fib_dp(n-2)
    cache[n] = value
    return value

print(fib_dp(998))

这仍然是递归的,但是使用了一个简单的哈希表,允许重用以前计算的斐波那契数,而不是重新计算。

如果你只想得到很少的斐波那契数,你可以使用矩阵法。

from numpy import matrix

def fib(n):
    return (matrix('0 1; 1 1', dtype='object') ** n).item(1)

它的速度很快,因为numpy使用了快速求幂算法。结果是O(log n)比比奈公式好因为它只使用整数。但如果你想让所有的斐波那契数都不超过n,最好是死记硬背。

如果你经常需要改变递归限制(例如在解决编程难题时),你可以定义一个简单的上下文管理器,像这样:

import sys

class recursionlimit:
    def __init__(self, limit):
        self.limit = limit

    def __enter__(self):
        self.old_limit = sys.getrecursionlimit()
        sys.setrecursionlimit(self.limit)

    def __exit__(self, type, value, tb):
        sys.setrecursionlimit(self.old_limit)

然后调用具有自定义限制的函数,您可以这样做:

with recursionlimit(1500):
    print(fib(1000, 0))

从with语句体退出时,递归限制将恢复到默认值。

附注:您可能还想增加Python进程的堆栈大小,以获得较大的递归限制值。例如,这可以通过ulimit shell内置或limits.conf(5)文件来完成。