这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
当前回答
是的,它是防止堆栈溢出的一种方法。Python(或者更确切地说,CPython实现)没有优化尾部递归,并且无限制的递归会导致堆栈溢出。你可以用sys.getrecursionlimit检查递归限制:
import sys
print(sys.getrecursionlimit())
并使用sys.setrecursionlimit更改递归限制:
sys.setrecursionlimit(1500)
但这样做是危险的——标准限制有点保守,但Python的堆栈框架可能相当大。
Python不是函数式语言,尾递归也不是一种特别有效的技术。如果可能的话,迭代地重写算法通常是一个更好的主意。
其他回答
看起来你只需要设置一个更高的递归深度:
import sys
sys.setrecursionlimit(1500)
我想给你一个使用内存计算斐波那契的例子,因为这将允许你使用递归计算更大的数字:
cache = {}
def fib_dp(n):
if n in cache:
return cache[n]
if n == 0: return 0
elif n == 1: return 1
else:
value = fib_dp(n-1) + fib_dp(n-2)
cache[n] = value
return value
print(fib_dp(998))
这仍然是递归的,但是使用了一个简单的哈希表,允许重用以前计算的斐波那契数,而不是重新计算。
我们还可以使用一种自底向上的动态规划方法
def fib_bottom_up(n):
bottom_up = [None] * (n+1)
bottom_up[0] = 1
bottom_up[1] = 1
for i in range(2, n+1):
bottom_up[i] = bottom_up[i-1] + bottom_up[i-2]
return bottom_up[n]
print(fib_bottom_up(20000))
如果你只想得到很少的斐波那契数,你可以使用矩阵法。
from numpy import matrix
def fib(n):
return (matrix('0 1; 1 1', dtype='object') ** n).item(1)
它的速度很快,因为numpy使用了快速求幂算法。结果是O(log n)比比奈公式好因为它只使用整数。但如果你想让所有的斐波那契数都不超过n,最好是死记硬背。
这是为了避免堆栈溢出。Python解释器限制了递归的深度,以帮助您避免无限递归,从而导致堆栈溢出。 尝试增加递归限制(sys.setrecursionlimit)或重写不使用递归的代码。
来自Python文档:
sys.getrecursionlimit () 返回递归限制的当前值,即Python解释器堆栈的最大深度。这个限制可以防止无限递归导致C堆栈溢出和Python崩溃。可以通过setrecursionlimit()来设置。