这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
当前回答
是的,它是防止堆栈溢出的一种方法。Python(或者更确切地说,CPython实现)没有优化尾部递归,并且无限制的递归会导致堆栈溢出。你可以用sys.getrecursionlimit检查递归限制:
import sys
print(sys.getrecursionlimit())
并使用sys.setrecursionlimit更改递归限制:
sys.setrecursionlimit(1500)
但这样做是危险的——标准限制有点保守,但Python的堆栈框架可能相当大。
Python不是函数式语言,尾递归也不是一种特别有效的技术。如果可能的话,迭代地重写算法通常是一个更好的主意。
其他回答
我知道这是一个老问题,但对于那些阅读的人来说,我建议不要使用递归来解决这样的问题——列表要快得多,并且完全避免递归。我将这样实现:
def fibonacci(n):
f = [0,1,1]
for i in xrange(3,n):
f.append(f[i-1] + f[i-2])
return 'The %.0fth fibonacci number is: %.0f' % (n,f[-1])
(在xrange中使用n+1,如果你从0开始计数你的斐波那契数列,而不是从1开始。)
编辑:6年后,我意识到我的“使用生成器”是轻率的,没有回答这个问题。我的歉意。
我想我的第一个问题是:你真的需要改变递归限制吗?如果不是,那么也许我的答案或其他不涉及改变递归限制的答案将适用。否则,如前所述,使用sys.getrecursionlimit(n)覆盖递归限制。
使用发电机?
def fib():
a, b = 0, 1
while True:
yield a
a, b = b, a + b
fibs = fib() #seems to be the only way to get the following line to work is to
#assign the infinite generator to a variable
f = [fibs.next() for x in xrange(1001)]
for num in f:
print num
以上fib()函数改编自Python生成器导论。
看起来你只需要设置一个更高的递归深度:
import sys
sys.setrecursionlimit(1500)
许多人建议增加递归限制是一个很好的解决方案,但它不是,因为总是会有限制。相反,使用迭代解决方案。
def fib(n):
a,b = 1,1
for i in range(n-1):
a,b = b,a+b
return a
print fib(5)
当然,斐波那契数可以用O(n)计算,应用比奈公式:
from math import floor, sqrt
def fib(n):
return int(floor(((1+sqrt(5))**n-(1-sqrt(5))**n)/(2**n*sqrt(5))+0.5))
正如评论者指出的那样,它不是O(1),而是O(n),因为2**n。另一个不同之处在于,您只能得到一个值,而使用递归则可以得到该值之前的所有Fibonacci(n)值。