这里有一个尾递归函数

def recursive_function(n, sum):
    if n < 1:
        return sum
    else:
        return recursive_function(n-1, sum+n)

c = 998
print(recursive_function(c, 0))

它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?


当前回答

正如@alex所建议的,您可以使用生成器函数按顺序而不是递归地完成此操作。

这里是你问题中的等效代码:

def fib(n):
    def fibseq(n):
        """ Iteratively return the first n Fibonacci numbers, starting from 0. """
        a, b = 0, 1
        for _ in xrange(n):
            yield a
            a, b = b, a + b

    return sum(v for v in fibseq(n))

print format(fib(100000), ',d')  # -> no recursion depth error

其他回答

使用一种保证尾部调用优化的语言。或者使用迭代。或者,和装饰师一起玩。

当然,斐波那契数可以用O(n)计算,应用比奈公式:

from math import floor, sqrt

def fib(n):                                                     
    return int(floor(((1+sqrt(5))**n-(1-sqrt(5))**n)/(2**n*sqrt(5))+0.5))

正如评论者指出的那样,它不是O(1),而是O(n),因为2**n。另一个不同之处在于,您只能得到一个值,而使用递归则可以得到该值之前的所有Fibonacci(n)值。

如果你只想得到很少的斐波那契数,你可以使用矩阵法。

from numpy import matrix

def fib(n):
    return (matrix('0 1; 1 1', dtype='object') ** n).item(1)

它的速度很快,因为numpy使用了快速求幂算法。结果是O(log n)比比奈公式好因为它只使用整数。但如果你想让所有的斐波那契数都不超过n,最好是死记硬背。

是的,它是防止堆栈溢出的一种方法。Python(或者更确切地说,CPython实现)没有优化尾部递归,并且无限制的递归会导致堆栈溢出。你可以用sys.getrecursionlimit检查递归限制:

import sys
print(sys.getrecursionlimit())

并使用sys.setrecursionlimit更改递归限制:

sys.setrecursionlimit(1500)

但这样做是危险的——标准限制有点保守,但Python的堆栈框架可能相当大。

Python不是函数式语言,尾递归也不是一种特别有效的技术。如果可能的话,迭代地重写算法通常是一个更好的主意。

许多人建议增加递归限制是一个很好的解决方案,但它不是,因为总是会有限制。相反,使用迭代解决方案。

def fib(n):
    a,b = 1,1
    for i in range(n-1):
        a,b = b,a+b
    return a
print fib(5)