这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
当前回答
编辑:6年后,我意识到我的“使用生成器”是轻率的,没有回答这个问题。我的歉意。
我想我的第一个问题是:你真的需要改变递归限制吗?如果不是,那么也许我的答案或其他不涉及改变递归限制的答案将适用。否则,如前所述,使用sys.getrecursionlimit(n)覆盖递归限制。
使用发电机?
def fib():
a, b = 0, 1
while True:
yield a
a, b = b, a + b
fibs = fib() #seems to be the only way to get the following line to work is to
#assign the infinite generator to a variable
f = [fibs.next() for x in xrange(1001)]
for num in f:
print num
以上fib()函数改编自Python生成器导论。
其他回答
import sys
sys.setrecursionlimit(1500)
def fib(n, sum):
if n < 1:
return sum
else:
return fib(n-1, sum+n)
c = 998
print(fib(c, 0))
当然,斐波那契数可以用O(n)计算,应用比奈公式:
from math import floor, sqrt
def fib(n):
return int(floor(((1+sqrt(5))**n-(1-sqrt(5))**n)/(2**n*sqrt(5))+0.5))
正如评论者指出的那样,它不是O(1),而是O(n),因为2**n。另一个不同之处在于,您只能得到一个值,而使用递归则可以得到该值之前的所有Fibonacci(n)值。
使用一种保证尾部调用优化的语言。或者使用迭代。或者,和装饰师一起玩。
正如@alex所建议的,您可以使用生成器函数按顺序而不是递归地完成此操作。
这里是你问题中的等效代码:
def fib(n):
def fibseq(n):
""" Iteratively return the first n Fibonacci numbers, starting from 0. """
a, b = 0, 1
for _ in xrange(n):
yield a
a, b = b, a + b
return sum(v for v in fibseq(n))
print format(fib(100000), ',d') # -> no recursion depth error
看起来你只需要设置一个更高的递归深度:
import sys
sys.setrecursionlimit(1500)