这里有一个尾递归函数

def recursive_function(n, sum):
    if n < 1:
        return sum
    else:
        return recursive_function(n-1, sum+n)

c = 998
print(recursive_function(c, 0))

它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?


当前回答

使用一种保证尾部调用优化的语言。或者使用迭代。或者,和装饰师一起玩。

其他回答

我有一个类似的问题,错误“最大递归深度超过”。我发现这个错误是由我用os.walk循环遍历的目录中的一个损坏文件触发的。如果您在解决这个问题时遇到了困难,并且您正在使用文件路径,请务必缩小范围,因为它可能是一个损坏的文件。

编辑:6年后,我意识到我的“使用生成器”是轻率的,没有回答这个问题。我的歉意。

我想我的第一个问题是:你真的需要改变递归限制吗?如果不是,那么也许我的答案或其他不涉及改变递归限制的答案将适用。否则,如前所述,使用sys.getrecursionlimit(n)覆盖递归限制。

使用发电机?

def fib():
    a, b = 0, 1
    while True:
        yield a
        a, b = b, a + b

fibs = fib() #seems to be the only way to get the following line to work is to
             #assign the infinite generator to a variable

f = [fibs.next() for x in xrange(1001)]

for num in f:
        print num

以上fib()函数改编自Python生成器导论。

我想给你一个使用内存计算斐波那契的例子,因为这将允许你使用递归计算更大的数字:

cache = {}
def fib_dp(n):
    if n in cache:
        return cache[n]
    if n == 0: return 0
    elif n == 1: return 1
    else:
        value = fib_dp(n-1) + fib_dp(n-2)
    cache[n] = value
    return value

print(fib_dp(998))

这仍然是递归的,但是使用了一个简单的哈希表,允许重用以前计算的斐波那契数,而不是重新计算。

import sys
sys.setrecursionlimit(1500)

def fib(n, sum):
    if n < 1:
        return sum
    else:
        return fib(n-1, sum+n)

c = 998
print(fib(c, 0))

如果你只想得到很少的斐波那契数,你可以使用矩阵法。

from numpy import matrix

def fib(n):
    return (matrix('0 1; 1 1', dtype='object') ** n).item(1)

它的速度很快,因为numpy使用了快速求幂算法。结果是O(log n)比比奈公式好因为它只使用整数。但如果你想让所有的斐波那契数都不超过n,最好是死记硬背。