这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
当前回答
import sys
sys.setrecursionlimit(1500)
def fib(n, sum):
if n < 1:
return sum
else:
return fib(n-1, sum+n)
c = 998
print(fib(c, 0))
其他回答
看起来你只需要设置一个更高的递归深度:
import sys
sys.setrecursionlimit(1500)
我想给你一个使用内存计算斐波那契的例子,因为这将允许你使用递归计算更大的数字:
cache = {}
def fib_dp(n):
if n in cache:
return cache[n]
if n == 0: return 0
elif n == 1: return 1
else:
value = fib_dp(n-1) + fib_dp(n-2)
cache[n] = value
return value
print(fib_dp(998))
这仍然是递归的,但是使用了一个简单的哈希表,允许重用以前计算的斐波那契数,而不是重新计算。
当然,斐波那契数可以用O(n)计算,应用比奈公式:
from math import floor, sqrt
def fib(n):
return int(floor(((1+sqrt(5))**n-(1-sqrt(5))**n)/(2**n*sqrt(5))+0.5))
正如评论者指出的那样,它不是O(1),而是O(n),因为2**n。另一个不同之处在于,您只能得到一个值,而使用递归则可以得到该值之前的所有Fibonacci(n)值。
使用一种保证尾部调用优化的语言。或者使用迭代。或者,和装饰师一起玩。
我们还可以使用一种自底向上的动态规划方法
def fib_bottom_up(n):
bottom_up = [None] * (n+1)
bottom_up[0] = 1
bottom_up[1] = 1
for i in range(2, n+1):
bottom_up[i] = bottom_up[i-1] + bottom_up[i-2]
return bottom_up[n]
print(fib_bottom_up(20000))