这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
这里有一个尾递归函数
def recursive_function(n, sum):
if n < 1:
return sum
else:
return recursive_function(n-1, sum+n)
c = 998
print(recursive_function(c, 0))
它一直工作到n=997,然后它就中断并抛出一个RecursionError:在比较中超过了最大递归深度。这只是一个堆栈溢出吗?有办法绕过它吗?
当前回答
我不确定我是不是在重复某人的意思但前段时间有人写了一个y算子用于递归调用函数
def tail_recursive(func):
y_operator = (lambda f: (lambda y: y(y))(lambda x: f(lambda *args: lambda: x(x)(*args))))(func)
def wrap_func_tail(*args):
out = y_operator(*args)
while callable(out): out = out()
return out
return wrap_func_tail
然后递归函数需要形式:
def my_recursive_func(g):
def wrapped(some_arg, acc):
if <condition>: return acc
return g(some_arg, acc)
return wrapped
# and finally you call it in code
(tail_recursive(my_recursive_func))(some_arg, acc)
对于斐波那契数,你的函数是这样的:
def fib(g):
def wrapped(n_1, n_2, n):
if n == 0: return n_1
return g(n_2, n_1 + n_2, n-1)
return wrapped
print((tail_recursive(fib))(0, 1, 1000000))
输出:
..684684301719893411568996526838242546875
(实际上是数字的音调)
其他回答
是的,它是防止堆栈溢出的一种方法。Python(或者更确切地说,CPython实现)没有优化尾部递归,并且无限制的递归会导致堆栈溢出。你可以用sys.getrecursionlimit检查递归限制:
import sys
print(sys.getrecursionlimit())
并使用sys.setrecursionlimit更改递归限制:
sys.setrecursionlimit(1500)
但这样做是危险的——标准限制有点保守,但Python的堆栈框架可能相当大。
Python不是函数式语言,尾递归也不是一种特别有效的技术。如果可能的话,迭代地重写算法通常是一个更好的主意。
RecursionError:在比较中超出的最大递归深度
解决方案:
首先,最好知道当你在一个大输入(> 10^4)上用Python执行递归函数时,你可能会遇到“最大递归深度超出错误”。
Python中的sys模块有一个函数getrecursionlimit()可以显示Python版本中的递归限制。
import sys
print("Python Recursive Limitation = ", sys.getrecursionlimit())
在某些版本的Python中,默认值是1000,而在另一些版本中则是1500
你可以改变这个限制,但重要的是要知道,如果你增加太多,就会出现内存溢出错误。
所以在增加它之前要小心。你可以使用setrecursionlimit()在Python中增加这个限制。
import sys
sys.setrecursionlimit(3000)
请点击此链接了解导致此问题的更多信息:
https://elvand.com/quick-sort-binary-search/
如果你只想得到很少的斐波那契数,你可以使用矩阵法。
from numpy import matrix
def fib(n):
return (matrix('0 1; 1 1', dtype='object') ** n).item(1)
它的速度很快,因为numpy使用了快速求幂算法。结果是O(log n)比比奈公式好因为它只使用整数。但如果你想让所有的斐波那契数都不超过n,最好是死记硬背。
我有一个类似的问题,错误“最大递归深度超过”。我发现这个错误是由我用os.walk循环遍历的目录中的一个损坏文件触发的。如果您在解决这个问题时遇到了困难,并且您正在使用文件路径,请务必缩小范围,因为它可能是一个损坏的文件。
使用一种保证尾部调用优化的语言。或者使用迭代。或者,和装饰师一起玩。