我最近偶然发现了2048游戏。通过在四个方向中的任何一个方向上移动类似的平铺,可以合并它们,以生成“更大”的平铺。每次移动后,一个新的平铺显示在随机的空位置,值为2或4。当所有的方块都被填满并且没有可以合并平铺的移动,或者你创建了一个值为2048的平铺时,游戏终止。

首先,我需要遵循一个明确的战略来实现目标。所以,我想为它写一个程序。

我当前的算法:

while (!game_over) {
    for each possible move:
        count_no_of_merges_for_2-tiles and 4-tiles
    choose the move with a large number of merges
}

我所做的是,在任何时候,我都会尝试将值为2和4的平铺合并,也就是说,我尝试尽可能少地使用2和4个平铺。如果我这样做,所有其他平铺都会自动合并,策略似乎很好。

但是,当我实际使用这个算法时,在游戏结束之前,我只得到了大约4000分。AFAIK的最高分数略高于20000分,这比我目前的分数要大得多。有比上述更好的算法吗?


当前回答

我在这里复制我博客上的一篇文章的内容


我提出的解决方案非常简单,易于实施。虽然,它已经达到131040分。给出了算法性能的几个基准。

算法

启发式评分算法

我的算法所基于的假设相当简单:如果你想获得更高的分数,那么棋盘必须尽可能保持整洁。特别地,最优设置由瓦片值的线性和单调递减顺序给出。这种直觉也会给你一个平铺值的上限:其中n是板上平铺的数量。

(如果需要时随机生成4个图块而不是2个图块,则有可能达到131072图块)

两种可能的董事会组织方式如下图所示:

为了以单调递减的顺序执行瓷砖的排序,得分si计算为板上线性化值的和乘以公共比率r<1的几何序列的值。

可以同时评估多个线性路径,最终得分将是任何路径的最大得分。

决策规则

实现的决策规则不太聪明,Python代码如下:

@staticmethod
def nextMove(board,recursion_depth=3):
    m,s = AI.nextMoveRecur(board,recursion_depth,recursion_depth)
    return m

@staticmethod
def nextMoveRecur(board,depth,maxDepth,base=0.9):
    bestScore = -1.
    bestMove = 0
    for m in range(1,5):
        if(board.validMove(m)):
            newBoard = copy.deepcopy(board)
            newBoard.move(m,add_tile=True)

            score = AI.evaluate(newBoard)
            if depth != 0:
                my_m,my_s = AI.nextMoveRecur(newBoard,depth-1,maxDepth)
                score += my_s*pow(base,maxDepth-depth+1)

            if(score > bestScore):
                bestMove = m
                bestScore = score
    return (bestMove,bestScore);

minmax或Expectimimax的实现肯定会改进算法。显然更多复杂的决策规则会降低算法的速度,并且需要一些时间来实现。我将在不久的将来尝试一个最小值实现。(敬请关注)

基准

T1-121测试-8个不同路径-r=0.125T2-122测试-8个不同路径-r=0.25T3-132测试-8个不同路径-r=0.5T4-211测试-2条不同路径-r=0.125T5-274测试-2条不同路径-r=0.25T6-211测试-2条不同路径-r=0.5

在T2的情况下,十次测试中有四次生成平均分数为42000的4096分图块

Code

该代码可以在GiHub上的以下链接找到:https://github.com/Nicola17/term2048-AI它基于term2048,用Python编写。我将尽快用C++实现一个更高效的版本。

其他回答

我是其他人在本主题中提到的AI程序的作者。您可以查看人工智能的运行情况或读取源代码。

目前,该程序在我的笔记本电脑上的浏览器中运行javascript时,每次移动大约需要100毫秒的思考时间,获得了大约90%的胜率,因此,尽管它还不完美(还!),但它的表现相当不错。

由于游戏是一个离散的状态空间,完美的信息,基于回合的游戏,如国际象棋和跳棋,我使用了已经被证明适用于这些游戏的相同方法,即带有alpha beta修剪的极小极大搜索。由于已经有很多关于该算法的信息,我将只讨论我在静态评估函数中使用的两种主要启发式方法,它们将其他人在这里表达的许多直觉形式化。

单调性

该启发式方法试图确保平铺的值都沿着左/右和上/下方向增加或减少。仅此启发式方法就抓住了许多其他人提到的直觉,即较高价值的瓦片应该聚集在角落中。它通常会防止价值较小的瓦片成为孤立的,并保持棋盘非常有序,较小的瓦片层叠并填充到较大的瓦片中。

这是一个完全单调的网格截图。我通过运行带有eval函数集的算法来实现这一点,从而忽略其他启发式,只考虑单调性。

平滑度

仅上述启发式方法就倾向于创建相邻瓦片值降低的结构,但当然,为了合并,相邻瓦片需要具有相同的值。因此,平滑启发式算法仅测量相邻平铺之间的值差,试图将此计数最小化。

《黑客新闻》的一位评论者用图论的方式对这一想法进行了有趣的形式化。

这是一张完美平滑的网格截图。

自由平铺

最后,由于游戏板太拥挤,选项可能会很快用完,所以免费瓷砖太少会受到惩罚。

就这样!在优化这些标准的同时搜索游戏空间会产生非常好的性能。使用像这样的通用方法而不是显式编码的移动策略的一个优点是,该算法通常可以找到有趣和意外的解决方案。如果你看着它跑,它通常会做出令人惊讶但有效的动作,比如突然切换它所建的墙或角落。

编辑:

这里展示了这种方法的威力。我取消了平铺值的上限(因此它在达到2048之后保持不变),这是八次试验后的最佳结果。

是的,这是4096和2048。=)这意味着它在同一块板上三次实现了令人难以捉摸的2048瓷砖。

我是一个2048控制器的作者,它的得分比本主题中提到的任何其他程序都要高。github上提供了控制器的有效实现。在单独的回购中,还有用于训练控制器状态评估功能的代码。本文描述了训练方法。

控制器使用expectimax搜索,该搜索具有通过时间差学习(强化学习技术)的变体从零开始学习的状态评估函数(没有人类2048专业知识)。状态值函数使用n元组网络,它基本上是板上观察到的模式的加权线性函数。总共涉及超过10亿重量。

表演

1次移动/秒:609104(平均100局)

10次移动/秒:589355(平均300场)

3局(约1500步/秒):511759(平均1000局)

10次移动/秒的平铺统计如下:

2048: 100%
4096: 100%
8192: 100%
16384: 97%
32768: 64%
32768,16384,8192,4096: 10%

(最后一行表示在板上同时具有给定的瓷砖)。

对于3层:

2048: 100%
4096: 100%
8192: 100%
16384: 96%
32768: 54%
32768,16384,8192,4096: 8%

然而,我从未观察到它获得65536平铺。

我想我找到了一个非常有效的算法,因为我经常得分超过10000分,我个人最好的成绩是16000分左右。我的解决方案并不是要把最大的数字放在角落里,而是要把它放在最前排。

请参见以下代码:

while( !game_over ) {
    move_direction=up;
    if( !move_is_possible(up) ) {
        if( move_is_possible(right) && move_is_possible(left) ){
            if( number_of_empty_cells_after_moves(left,up) > number_of_empty_cells_after_moves(right,up) ) 
                move_direction = left;
            else
                move_direction = right;
        } else if ( move_is_possible(left) ){
            move_direction = left;
        } else if ( move_is_possible(right) ){
            move_direction = right;
        } else {
            move_direction = down;
        }
    }
    do_move(move_direction);
}

该算法对于赢得游戏来说不是最佳的,但就性能和所需代码量而言,它是相当最佳的:

  if(can move neither right, up or down)
    direction = left
  else
  {
    do
    {
      direction = random from (right, down, up)
    }
    while(can not move in "direction")
  }

编辑:这是一个天真的算法,模拟人类有意识的思维过程,与搜索所有可能性的人工智能相比,它的结果非常微弱,因为它只向前看一块砖。它是在答复时间表的早期提交的。

我改进了算法,打败了游戏!它可能会因为临近结束时的简单厄运而失败(你被迫向下移动,这是你永远不应该做的,并且在你最高的位置会出现一个瓦片。只需保持最上面的一行填满,这样向左移动不会打破模式),但基本上你最终有一个固定的部分和一个移动的部分可以玩。这是您的目标:

这是我默认选择的模型。

1024 512 256 128
  8   16  32  64
  4   2   x   x
  x   x   x   x

所选的角是任意的,你基本上不会按一个键(禁止的移动),如果按了,你会再次按相反的键并尝试修复它。对于未来的平铺,模型总是希望下一个随机平铺为2,并出现在当前模型的相反侧(当第一行不完整时,在右下角,第一行完成后,在左下角)。

算法来了。大约80%的人获胜(似乎总是可以用更“专业”的人工智能技术获胜,但我对此并不确定。)

initiateModel();

while(!game_over)
{    
    checkCornerChosen(); // Unimplemented, but it might be an improvement to change the reference point

    for each 3 possible move:
        evaluateResult()
    execute move with best score
    if no move is available, execute forbidden move and undo, recalculateModel()
 }

 evaluateResult() {
     calculatesBestCurrentModel()
     calculates distance to chosen model
     stores result
 }

 calculateBestCurrentModel() {
      (according to the current highest tile acheived and their distribution)
  }

关于缺失步骤的几点提示。在这里:

由于运气更接近预期模型,模型发生了变化。人工智能试图实现的模型是

 512 256 128  x
  X   X   x   x
  X   X   x   x
  x   x   x   x

实现这一目标的链条变成了:

 512 256  64  O
  8   16  32  O
  4   x   x   x
  x   x   x   x

O代表禁区。。。

因此,它将向右,然后再向右,然后(向右或向右,取决于4创建的位置),然后继续完成链,直到它得到:

因此,现在模型和链又回到了:

 512 256 128  64
  4   8  16   32
  X   X   x   x
  x   x   x   x

第二个指针,它运气不好,它的主要位置已经被占据。它很可能会失败,但仍能实现:

这里的模型和链是:

  O 1024 512 256
  O   O   O  128
  8  16   32  64
  4   x   x   x

当它设法达到128时,它将再次获得一整行:

  O 1024 512 256
  x   x  128 128
  x   x   x   x
  x   x   x   x