我最近偶然发现了2048游戏。通过在四个方向中的任何一个方向上移动类似的平铺,可以合并它们,以生成“更大”的平铺。每次移动后,一个新的平铺显示在随机的空位置,值为2或4。当所有的方块都被填满并且没有可以合并平铺的移动,或者你创建了一个值为2048的平铺时,游戏终止。

首先,我需要遵循一个明确的战略来实现目标。所以,我想为它写一个程序。

我当前的算法:

while (!game_over) {
    for each possible move:
        count_no_of_merges_for_2-tiles and 4-tiles
    choose the move with a large number of merges
}

我所做的是,在任何时候,我都会尝试将值为2和4的平铺合并,也就是说,我尝试尽可能少地使用2和4个平铺。如果我这样做,所有其他平铺都会自动合并,策略似乎很好。

但是,当我实际使用这个算法时,在游戏结束之前,我只得到了大约4000分。AFAIK的最高分数略高于20000分,这比我目前的分数要大得多。有比上述更好的算法吗?


当前回答

我的尝试与上面的其他解决方案一样使用expectimax,但没有比特板。Nneonneo的解决方案可以检查1000万次移动,大约深度为4,剩余6个平铺,可能移动4次(2*6*4)4。在我的情况下,这个深度需要很长时间来探索,我根据剩余的空闲平铺数调整expectimax搜索的深度:

depth = free > 7 ? 1 : (free > 4 ? 2 : 3)

板的得分通过自由瓷砖数量的平方和2D网格的点积的加权和计算,如下所示:

[[10,8,7,6.5],
 [.5,.7,1,3],
 [-.5,-1.5,-1.8,-2],
 [-3.8,-3.7,-3.5,-3]]

这迫使从左上角的瓦片以蛇形的方式向下组织瓦片。

下面或github上的代码:

变量n=4,M=新矩阵变换(n);var ai={weights:[1,1],深度:1};//默认情况下,depth=1,但我们会根据空闲平铺的数量对每个预测进行调整var蛇=[[10,8,7,6.5],[.5,.7,1,3],[-.5,-1.5,-1.8,-2],[-3.8,-3.7,-3.5,-3]]snake=snake.map(函数(a){return a.map(Math.exp)})初始化(ai)函数运行(ai){变量p;而((p=预测(ai))!=空){移动(p,ai);}//console.log(ai.grid,maxValue(ai.ggrid))ai.maxValue=最大值(ai.grid)控制台日志(ai)}函数初始化(ai){ai.grid=[];对于(变量i=0;i<n;i++){ai网格[i]=[]对于(变量j=0;j<n;j++){ai.grid[i][j]=0;}}兰特(ai网格)兰特(ai网格)ai.steps=0;}函数move(p,ai){//0:向上,1:向右,2:向下,3:向左var newgrid=mv(p,ai.grid);if(!equal(newgrid,ai.grid)){//console.log(stats(newgrid,ai.grid))ai.grid=新网格;尝试{兰特(ai网格)ai.步骤++;}捕获(e){控制台日志(“无房间”,e)}}}函数预测(ai){var free=freeCells(ai.grid);ai.depth=自由>7?1:(自由>4?2:3);var-root={path:[],prob:1,grid:ai.grid,childs:[]};var x=expandMove(根,ai)//console.log(“叶数”,x)//console.log(“叶数2”,countLeaves(根))if(!root.childres.length)返回nullvar values=root.childres.map(expectimax);var mx=最大值;return root.childrens[mx[1]].path[0]}函数countLeaves(节点){变量x=0;if(!node.childres.length)返回1;for(node.childs的var n)x+=叶数(n);返回x;}函数预期值(节点){if(!node.childres.length){返回node.score}其他{var values=node.childres.map(expectimax);如果(node.prob){//我们处于最大节点return Math.max.apply(空,值)}否则{//我们处于随机节点var平均值=0;对于(var i=0;i<values.length;i++)avg+=节点.子项[i].prob*值[i]返回平均值/(values.length/2)}}}函数expandRandom(节点,ai){变量x=0;对于(var i=0;i<node.grid.length;i++)对于(var j=0;j<node.grid.length;j++)if(!node.grid[i][j]){var grid2=M.copy(node.grid),grid4=M.copy(node.grid);网格2[i][j]=2;网格4[i][j]=4;var child2={grid:grid2,prob:.9,path:node.path,childs:[]};var child4={grid:grid4,prob:.1,path:node.path,childs:[]}node.childres.push(child2)node.childres.push(child4)x+=expandMove(child2,ai)x+=expandMove(child4,ai)}返回x;}函数expandMove(node,ai){//node={grid,path,score}var isLeaf=真,x=0;如果(节点路径长度小于ai深度){for(变量移动[0,1,2,3]){var grid=mv(移动,node.grid);if(!equal(grid,node.grid)){isLeaf=false;var child={grid:grid,path:node.path.contat([move]),childs:[]}node.childres.push(child)x+=expandRandom(子级,ai)}}}if(isLeaf)node.score=dot(ai.weights,stats(node.grid))return是Leaf?1:x;}var单元格=[]var table=document.querySelector(“table”);对于(变量i=0;i<n;i++){var tr=document.createElement(“tr”);单元格[i]=[];对于(变量j=0;j<n;j++){cells[i][j]=document.createElement(“td”);tr.appendChild(单元格[i][j])}table.appendChild(tr);}函数更新UI(ai){cells.forEach(函数(a,i){a.forEach(函数(el,j){el.innerHTML=ai.grid[i][j]| |“”})});}更新UI(ai);updateHint(预测(ai));函数runAI(){var p=预测(ai);如果(p!=null&&ai.running){移动(p,ai);更新UI(ai);updateHint(p);requestAnimationFrame(runAI);}}runai.onclick=函数(){if(!ai.running){this.innerHTML=“停止AI”;ai.running=真;runAI();}其他{this.innerHTML=“运行AI”;ai.running=false;updateHint(预测(ai));}}函数updateHint(dir){hintvalue.innerHTML=['↑', '→', '↓', '←'][目录]| |“”;}document.addEventListener(“keydown”,函数(事件){if(!event.target.matches('.r*'))返回;event.prpreventDefault();//避免滚动if(地图中的event.which){移动(map[event.with],ai)console.log(stats(ai.grid))更新UI(ai);updateHint(预测(ai));}})变量映射={38:0,//以上39:1,//右40:2,//向下37:3,//左};init.onclick=函数(){初始化(ai);更新UI(ai);updateHint(预测(ai));}函数统计信息(网格,previousGrid){var free=freeCells(网格);var c=dot2(网格,蛇);返回[c,free*free];}函数dist2(a,b){//2D距离的平方返回Math.pow(a[0]-b[0],2)+Math.pow(a[1]-b[1],2)}功能点(a,b){变量r=0;对于(var i=0;i<a.length;i++)r+=a[i]*b[i];返回r}函数dot2(a,b){变量r=0;对于(var i=0;i<a.length;i++)对于(变量j=0;j<a[0].length;j++)r+=a[i][j]*b[i][j]返回r;}函数积(a){return a.reduce(函数(v,x){返回v*x}, 1)}函数maxValue(网格){return Math.max.apply(null,grid.map(函数(a){return Math.max.apply(null,a)}));}无功能单元格(网格){返回grid.reduce(函数(v,a){返回v+a.reduce(函数(t,x){返回t+(x==0)}, 0)}, 0)}函数max(arr){//返回max的[value,index]var m=[-无限,空];对于(变量i=0;i<arr.length;i++){如果(arr[i]>m[0])m=[arr[i],i];}返回m}函数min(arr){//返回min的[value,index]var m=[无限,空];对于(变量i=0;i<arr.length;i++){如果(arr[i]<m[0])m=[arr[i],i];}返回m}函数maxScore(节点){变量最小值={分数:-无限,路径:[]};for(节点的var节点){如果(node.score>min.score)min=节点;}

其他回答

我的尝试与上面的其他解决方案一样使用expectimax,但没有比特板。Nneonneo的解决方案可以检查1000万次移动,大约深度为4,剩余6个平铺,可能移动4次(2*6*4)4。在我的情况下,这个深度需要很长时间来探索,我根据剩余的空闲平铺数调整expectimax搜索的深度:

depth = free > 7 ? 1 : (free > 4 ? 2 : 3)

板的得分通过自由瓷砖数量的平方和2D网格的点积的加权和计算,如下所示:

[[10,8,7,6.5],
 [.5,.7,1,3],
 [-.5,-1.5,-1.8,-2],
 [-3.8,-3.7,-3.5,-3]]

这迫使从左上角的瓦片以蛇形的方式向下组织瓦片。

下面或github上的代码:

变量n=4,M=新矩阵变换(n);var ai={weights:[1,1],深度:1};//默认情况下,depth=1,但我们会根据空闲平铺的数量对每个预测进行调整var蛇=[[10,8,7,6.5],[.5,.7,1,3],[-.5,-1.5,-1.8,-2],[-3.8,-3.7,-3.5,-3]]snake=snake.map(函数(a){return a.map(Math.exp)})初始化(ai)函数运行(ai){变量p;而((p=预测(ai))!=空){移动(p,ai);}//console.log(ai.grid,maxValue(ai.ggrid))ai.maxValue=最大值(ai.grid)控制台日志(ai)}函数初始化(ai){ai.grid=[];对于(变量i=0;i<n;i++){ai网格[i]=[]对于(变量j=0;j<n;j++){ai.grid[i][j]=0;}}兰特(ai网格)兰特(ai网格)ai.steps=0;}函数move(p,ai){//0:向上,1:向右,2:向下,3:向左var newgrid=mv(p,ai.grid);if(!equal(newgrid,ai.grid)){//console.log(stats(newgrid,ai.grid))ai.grid=新网格;尝试{兰特(ai网格)ai.步骤++;}捕获(e){控制台日志(“无房间”,e)}}}函数预测(ai){var free=freeCells(ai.grid);ai.depth=自由>7?1:(自由>4?2:3);var-root={path:[],prob:1,grid:ai.grid,childs:[]};var x=expandMove(根,ai)//console.log(“叶数”,x)//console.log(“叶数2”,countLeaves(根))if(!root.childres.length)返回nullvar values=root.childres.map(expectimax);var mx=最大值;return root.childrens[mx[1]].path[0]}函数countLeaves(节点){变量x=0;if(!node.childres.length)返回1;for(node.childs的var n)x+=叶数(n);返回x;}函数预期值(节点){if(!node.childres.length){返回node.score}其他{var values=node.childres.map(expectimax);如果(node.prob){//我们处于最大节点return Math.max.apply(空,值)}否则{//我们处于随机节点var平均值=0;对于(var i=0;i<values.length;i++)avg+=节点.子项[i].prob*值[i]返回平均值/(values.length/2)}}}函数expandRandom(节点,ai){变量x=0;对于(var i=0;i<node.grid.length;i++)对于(var j=0;j<node.grid.length;j++)if(!node.grid[i][j]){var grid2=M.copy(node.grid),grid4=M.copy(node.grid);网格2[i][j]=2;网格4[i][j]=4;var child2={grid:grid2,prob:.9,path:node.path,childs:[]};var child4={grid:grid4,prob:.1,path:node.path,childs:[]}node.childres.push(child2)node.childres.push(child4)x+=expandMove(child2,ai)x+=expandMove(child4,ai)}返回x;}函数expandMove(node,ai){//node={grid,path,score}var isLeaf=真,x=0;如果(节点路径长度小于ai深度){for(变量移动[0,1,2,3]){var grid=mv(移动,node.grid);if(!equal(grid,node.grid)){isLeaf=false;var child={grid:grid,path:node.path.contat([move]),childs:[]}node.childres.push(child)x+=expandRandom(子级,ai)}}}if(isLeaf)node.score=dot(ai.weights,stats(node.grid))return是Leaf?1:x;}var单元格=[]var table=document.querySelector(“table”);对于(变量i=0;i<n;i++){var tr=document.createElement(“tr”);单元格[i]=[];对于(变量j=0;j<n;j++){cells[i][j]=document.createElement(“td”);tr.appendChild(单元格[i][j])}table.appendChild(tr);}函数更新UI(ai){cells.forEach(函数(a,i){a.forEach(函数(el,j){el.innerHTML=ai.grid[i][j]| |“”})});}更新UI(ai);updateHint(预测(ai));函数runAI(){var p=预测(ai);如果(p!=null&&ai.running){移动(p,ai);更新UI(ai);updateHint(p);requestAnimationFrame(runAI);}}runai.onclick=函数(){if(!ai.running){this.innerHTML=“停止AI”;ai.running=真;runAI();}其他{this.innerHTML=“运行AI”;ai.running=false;updateHint(预测(ai));}}函数updateHint(dir){hintvalue.innerHTML=['↑', '→', '↓', '←'][目录]| |“”;}document.addEventListener(“keydown”,函数(事件){if(!event.target.matches('.r*'))返回;event.prpreventDefault();//避免滚动if(地图中的event.which){移动(map[event.with],ai)console.log(stats(ai.grid))更新UI(ai);updateHint(预测(ai));}})变量映射={38:0,//以上39:1,//右40:2,//向下37:3,//左};init.onclick=函数(){初始化(ai);更新UI(ai);updateHint(预测(ai));}函数统计信息(网格,previousGrid){var free=freeCells(网格);var c=dot2(网格,蛇);返回[c,free*free];}函数dist2(a,b){//2D距离的平方返回Math.pow(a[0]-b[0],2)+Math.pow(a[1]-b[1],2)}功能点(a,b){变量r=0;对于(var i=0;i<a.length;i++)r+=a[i]*b[i];返回r}函数dot2(a,b){变量r=0;对于(var i=0;i<a.length;i++)对于(变量j=0;j<a[0].length;j++)r+=a[i][j]*b[i][j]返回r;}函数积(a){return a.reduce(函数(v,x){返回v*x}, 1)}函数maxValue(网格){return Math.max.apply(null,grid.map(函数(a){return Math.max.apply(null,a)}));}无功能单元格(网格){返回grid.reduce(函数(v,a){返回v+a.reduce(函数(t,x){返回t+(x==0)}, 0)}, 0)}函数max(arr){//返回max的[value,index]var m=[-无限,空];对于(变量i=0;i<arr.length;i++){如果(arr[i]>m[0])m=[arr[i],i];}返回m}函数min(arr){//返回min的[value,index]var m=[无限,空];对于(变量i=0;i<arr.length;i++){如果(arr[i]<m[0])m=[arr[i],i];}返回m}函数maxScore(节点){变量最小值={分数:-无限,路径:[]};for(节点的var节点){如果(node.score>min.score)min=节点;}

这不是对OP问题的直接回答,这是我迄今为止试图解决同一问题的更多东西(实验),并获得了一些结果和一些我想分享的观察结果,我很好奇我们能否从中获得一些进一步的见解。

我刚刚尝试了使用alpha beta修剪的minimax实现,搜索树深度截止值为3和5。我试图解决4x4网格的相同问题,作为edX课程ColumbiaX:CSMM101x人工智能(AI)的项目作业。

我应用了两个启发式评估函数的凸组合(尝试了不同的启发式权重),主要来自直觉和上面讨论的函数:

单调性可用的可用空间

在我的情况下,电脑玩家是完全随机的,但我仍然假设了对抗性设置,并将AI玩家代理实现为最大玩家。

我有4x4网格来玩游戏。

观察结果:

如果我给第一个启发式函数或第二个启发式函数分配了太多权重,那么AI玩家获得的分数都很低。我对启发式函数进行了许多可能的权重分配,并采用了凸组合,但很少有AI玩家能够得分2048。大多数时候,它要么停在1024或512。

我也尝试过拐角启发式,但出于某种原因,它会使结果更糟,凭直觉为什么?

此外,我尝试将搜索深度截止值从3增加到5(我不能再增加了,因为即使在修剪的情况下,搜索该空间也超过了允许的时间),并添加了一个启发式方法,它查看相邻平铺的值,如果它们可以合并,则会给出更多的点,但我仍然无法获得2048。

我认为使用Expectimax而不是minimax会更好,但我仍然希望只使用minimax来解决这个问题,并获得2048或4096等高分。我不确定我是否遗漏了什么。

以下动画显示了AI代理与计算机玩家玩游戏的最后几个步骤:

任何见解都将非常有用,提前感谢。(这是我博客文章的链接:https://sandipanweb.wordpress.com/2017/03/06/using-minimax-with-alpha-beta-pruning-and-heuristic-evaluation-to-solve-2048-game-with-computer/以及youtube视频:https://www.youtube.com/watch?v=VnVFilfZ0r4)

以下动画显示了游戏的最后几个步骤,其中AI玩家代理可以获得2048分,这一次还添加了绝对值启发式:

下图显示了玩家AI代理探索的游戏树,假设计算机是对手,只需一步:

这里已经有了这款游戏的AI实现。自述节选:

该算法是迭代加深深度优先alpha beta搜索。求值函数试图保持行和列的单调性(要么减少,要么增加),同时最小化网格上的平铺数量。

黑客新闻上也有关于这个算法的讨论,你可能会发现它很有用。

该算法对于赢得游戏来说不是最佳的,但就性能和所需代码量而言,它是相当最佳的:

  if(can move neither right, up or down)
    direction = left
  else
  {
    do
    {
      direction = random from (right, down, up)
    }
    while(can not move in "direction")
  }

我是其他人在本主题中提到的AI程序的作者。您可以查看人工智能的运行情况或读取源代码。

目前,该程序在我的笔记本电脑上的浏览器中运行javascript时,每次移动大约需要100毫秒的思考时间,获得了大约90%的胜率,因此,尽管它还不完美(还!),但它的表现相当不错。

由于游戏是一个离散的状态空间,完美的信息,基于回合的游戏,如国际象棋和跳棋,我使用了已经被证明适用于这些游戏的相同方法,即带有alpha beta修剪的极小极大搜索。由于已经有很多关于该算法的信息,我将只讨论我在静态评估函数中使用的两种主要启发式方法,它们将其他人在这里表达的许多直觉形式化。

单调性

该启发式方法试图确保平铺的值都沿着左/右和上/下方向增加或减少。仅此启发式方法就抓住了许多其他人提到的直觉,即较高价值的瓦片应该聚集在角落中。它通常会防止价值较小的瓦片成为孤立的,并保持棋盘非常有序,较小的瓦片层叠并填充到较大的瓦片中。

这是一个完全单调的网格截图。我通过运行带有eval函数集的算法来实现这一点,从而忽略其他启发式,只考虑单调性。

平滑度

仅上述启发式方法就倾向于创建相邻瓦片值降低的结构,但当然,为了合并,相邻瓦片需要具有相同的值。因此,平滑启发式算法仅测量相邻平铺之间的值差,试图将此计数最小化。

《黑客新闻》的一位评论者用图论的方式对这一想法进行了有趣的形式化。

这是一张完美平滑的网格截图。

自由平铺

最后,由于游戏板太拥挤,选项可能会很快用完,所以免费瓷砖太少会受到惩罚。

就这样!在优化这些标准的同时搜索游戏空间会产生非常好的性能。使用像这样的通用方法而不是显式编码的移动策略的一个优点是,该算法通常可以找到有趣和意外的解决方案。如果你看着它跑,它通常会做出令人惊讶但有效的动作,比如突然切换它所建的墙或角落。

编辑:

这里展示了这种方法的威力。我取消了平铺值的上限(因此它在达到2048之后保持不变),这是八次试验后的最佳结果。

是的,这是4096和2048。=)这意味着它在同一块板上三次实现了令人难以捉摸的2048瓷砖。