我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

logb(n)是什么?

它是指在达到尺寸为1的截面之前,可以将长度为n的原木重复切成b等份的次数。

其他回答

我一直以来在脑海中想象运行在O(log n)中的算法的最佳方式如下:

如果您将问题大小增加一个乘法量(即将其大小乘以10),则做功仅增加一个加法量。

将此应用于二叉树问题,这样您就有了一个很好的应用程序:如果将二叉树中的节点数加倍,则高度仅增加1(一个加法量)。如果再增加一倍,它仍然只增加了1。(显然,我假设它保持平衡)。这样,当问题规模成倍增加时,你的工作量不会加倍,而只是做了稍微多一点的工作。这就是为什么O(logn)算法非常棒的原因。

但O(log n)到底是什么?例如,如果一个>完整二叉树的高度是O(logn),这意味着什么?

我会将其重新表述为“完整二叉树的高度是logn”。如果一步一步向下遍历,计算完整的二叉树的高度将是O(logn)。

我无法理解如何用对数来识别函数时间

对数本质上是幂的倒数。因此,如果函数的每个“步骤”都在从原始项集中删除一个元素因子,那就是对数时间算法。

对于树的示例,您可以很容易地看到,当您继续遍历时,逐步降低节点级别会减少指数级的元素数量。浏览按姓名排序的电话簿的流行示例基本上等同于遍历二进制搜索树(中间页面是根元素,您可以在每个步骤中推断是向左还是向右)。

我无法理解如何使用日志时间标识函数。

对数运行时间函数最常见的属性是:

选择下一个要执行某些操作的元素是多种可能性之一,并且只需要选择一个。

or

执行操作的元素是n的数字

这就是为什么,例如,在电话簿中查找人是O(logn)。你不需要检查电话簿上的每个人,就能找到合适的人;相反,你可以简单地根据他们的名字的字母顺序进行划分和征服,在每个部分中,你只需要探索每个部分的一个子集,就可以最终找到某人的电话号码。

当然,一本更大的电话簿仍然需要更长的时间,但它的增长速度不会像增加电话簿的比例那样快。


我们可以扩展电话簿示例,以比较其他类型的操作及其运行时间。我们将假设我们的电话簿中有具有唯一名称的业务(“黄页”)和可能没有唯一名称的人员(“白页”)。电话号码最多分配给一个人或一家公司。我们还将假设翻到特定页面需要恒定的时间。

以下是我们可能在电话簿上执行的一些操作的运行时间,从最快到最慢:

O(1)(在最坏的情况下):给定企业名称所在的页面和企业名称,找到电话号码。O(1)(在一般情况下):给定一个人的名字和他们的名字所在的页面,找到电话号码。O(log n):给定一个人的名字,在书中你还没有搜索到的部分的中途随机抽取一个点,然后检查这个人的名字是否在这个点上,从而找到电话号码。然后在书中人名所在的部分重复这个过程。(这是对人名的二进制搜索。)O(n):查找电话号码包含数字“5”的所有人。O(n):给定一个电话号码,找到拥有该号码的人或企业。O(n log n):打印机的办公室出现了混乱,我们的电话簿上的所有页面都以随机顺序插入。通过查看每一页上的名字,然后将该页放在新的空电话簿中的适当位置,修正顺序,使其正确。

对于以下示例,我们现在在打印机的办公室。电话簿等待邮寄给每位居民或企业,每个电话簿上都有一个标签,标明应该邮寄到哪里。每个人或企业都有一本电话簿。

O(n log n):我们想让电话簿个性化,所以我们将在他们指定的副本中找到每个人或企业的名字,然后在电话簿中圈出他们的名字,并为他们的惠顾写一封简短的感谢信。O(n2):办公室发生了一个错误,每个电话簿中的每个条目在电话号码末尾都有一个额外的“0”。取出一些白色,去掉每个零。O(n·n!):我们准备好把电话簿装到码头上了。不幸的是,原本要装书的机器人已经失控了:它正在把书按随机顺序放在卡车上!更糟糕的是,它把所有的书都装到卡车上,然后检查它们的顺序是否正确,如果不正确,它就把它们卸下来,重新开始。(这是可怕的bogo类型。)O(nn):你把机器人修好,这样它就能正确地装载东西。第二天,你的一个同事对你开了个玩笑,把装卸台机器人连接到自动打印系统上。每次机器人去装载一本原版书时,工厂打印机都会对所有的电话簿进行重复打印!幸运的是,机器人的错误检测系统足够复杂,当它遇到要加载的复制书时,它不会尝试打印更多的副本,但它仍然必须加载已打印的每一本原始和复制书。

首先,我建议您阅读以下书籍:;

算法(第4版)

下面是一些函数及其预期的复杂性。数字表示语句执行频率。

以下Big-O复杂性图表也取自bigocheatsheet

最后,非常简单的展示展示了它是如何计算的;

剖析程序的语句执行频率。

分析程序的运行时间(示例)。

logx到基b=y是b^y=x的倒数

如果有深度为d、大小为n的M元树,则:

遍历整棵树~O(M^d)=O(n)在树中行走一条路径~O(d)=O(logn到基M)