我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

你可以通过说时间与N中的位数成正比来直观地想到O(log N)。

如果一个操作对输入的每个数字或位执行恒定的时间工作,则整个操作所花费的时间将与输入中的数字或位的数量成比例,而不是与输入的大小成比例;因此是O(log N)而不是O(N)。

如果一个操作做出一系列恒定的时间决定,每个决定将要考虑的输入的大小减半(减少3、4、5…的因子),那么整个过程将花费与输入大小N的对数基2(基3、基4、基5…)成比例的时间,而不是O(N)。

等等

其他回答

我可以补充一些有趣的东西,很久以前我在科尔曼等的书中读过。现在,想象一个问题,我们必须在问题空间中找到解决方案。这个问题空间应该是有限的。

现在,如果你能证明,在你的算法的每一次迭代中,你都切断了这个空间的一部分,这不小于某个极限,这意味着你的算法在O(logN)时间内运行。

我应该指出,我们这里讨论的是相对分数极限,而不是绝对分数极限。二进制搜索是一个经典的例子。在每一步中,我们都会丢掉1/2的问题空间。但二进制搜索并不是唯一的例子。假设,你以某种方式证明了,在每一步中,你至少丢掉了1/128的问题空间。这意味着,您的程序仍然以O(logN)时间运行,尽管比二进制搜索慢得多。这是分析递归算法的一个很好的提示。通常可以证明,在每一步递归都不会使用几个变量,这会导致问题空间中某些分数的截断。

分而治之范式中的算法具有复杂性O(logn)。这里有一个例子,计算你自己的幂函数,

int power(int x, unsigned int y)
{
    int temp;
    if( y == 0)
        return 1;
    temp = power(x, y/2);
    if (y%2 == 0)
        return temp*temp;
    else
        return x*temp*temp;
}

从…起http://www.geeksforgeeks.org/write-a-c-program-to-calculate-powxn/

对数运行时间(O(log n))本质上意味着运行时间与输入大小的对数成比例增长-例如,如果10个项目最多需要一定的时间x,100个项目最多花费2倍,10000个项目最多耗费4倍,那么它看起来像是O(log n)时间复杂性。

我可以举一个for循环的例子,也许一旦掌握了这个概念,在不同的上下文中理解起来会更简单。

这意味着在循环中,步长呈指数增长。例如。

for (i=1; i<=n; i=i*2) {;}

该程序的O表示法的复杂性为O(log(n))。让我们尝试手动循环(n介于512和1023之间(不包括1024):

step: 1   2   3   4   5    6    7    8     9     10
   i: 1   2   4   8   16   32   64   128   256   512

尽管n介于512和1023之间,但只进行了10次迭代。这是因为循环中的步骤呈指数增长,因此只需要10次迭代就可以到达终点。

x的对数(到a的底)是a^x的反函数。这就像说对数是指数的倒数。

现在试着这样看,如果指数增长非常快,那么对数增长(相反)非常慢。

O(n)和O(log(n))之间的差异是巨大的,类似于O(n(n)与O(a^n)之间的区别(a是常数)。

O(logn)指的是一个函数(或算法,或算法中的步骤),其工作时间与输入大小的对数成正比(大多数情况下通常以2为基数,但并不总是以2为底,在任何情况下,通过big-O符号*,这都是无关紧要的)。

对数函数是指数函数的倒数。换句话说,如果您的输入呈指数增长(而不是通常认为的线性增长),则函数呈线性增长。

O(logn)运行时间在任何一种分而治之的应用程序中都很常见,因为(理想情况下)每次都会将工作减半。如果在每一个除法或征服步骤中,你都在做恒定时间的工作(或不是恒定时间的,但随着时间的增长比O(log n)慢),那么你的整个函数就是O(log)。相当常见的是,每个步骤都需要输入线性时间;这将相当于O(n log n)的总时间复杂度。

二进制搜索的运行时间复杂性是O(logn)的一个例子。这是因为在二进制搜索中,通过将数组分成两半,并且每一步只关注一半,您总是忽略后面每一步的一半输入。每一步都是恒定的时间,因为在二进制搜索中,您只需要将一个元素与关键字进行比较,就可以确定下一步要做什么,而不管您考虑的数组在任何时候都有多大。因此,大约执行log(n)/log(2)步。

合并排序的运行时间复杂性是O(n log n)的一个例子。这是因为每一步都将阵列一分为二,总共约为log(n)/log(2)步。然而,在每一步中,您都需要对所有元素执行合并操作(无论是对n/2个元素的两个子列表执行一次合并操作,还是对n/4个元素的四个子列表执行两次合并操作都是无关紧要的,因为这增加了每一步对n个元素执行合并的必要性)。因此,总复杂度为O(n log n)。

*记住,根据定义,big-O表示法并不重要。同样,通过改变对数的基数规则,不同基数的对数之间的唯一差异是一个常数因子。