我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

分而治之范式中的算法具有复杂性O(logn)。这里有一个例子,计算你自己的幂函数,

int power(int x, unsigned int y)
{
    int temp;
    if( y == 0)
        return 1;
    temp = power(x, y/2);
    if (y%2 == 0)
        return temp*temp;
    else
        return x*temp*temp;
}

从…起http://www.geeksforgeeks.org/write-a-c-program-to-calculate-powxn/

其他回答

这仅仅意味着该任务所需的时间随着log(n)的增加而增加(例如:n=10时为2s,n=100时为4s,…)。请阅读维基百科关于二进制搜索算法和大O符号的文章以了解更多的精度。

logb(n)是什么?

它是指在达到尺寸为1的截面之前,可以将长度为n的原木重复切成b等份的次数。

简单地说:在算法的每一步,你都可以将工作减半。(渐近等价于第三、第四、…)

如果您有一个函数需要:

1 millisecond to complete if you have 2 elements.
2 milliseconds to complete if you have 4 elements.
3 milliseconds to complete if you have 8 elements.
4 milliseconds to complete if you have 16 elements.
...
n milliseconds to complete if you have 2^n elements.

然后需要log2(n)时间。广义地说,大O符号意味着关系只需要对大n成立,常数因子和小项可以忽略。

O(logn)是衡量任何代码运行时性能的多项式时间复杂度之一。

我希望你已经听说过二进制搜索算法。

假设您必须在大小为N的数组中找到一个元素。

基本上,代码执行如下N不适用于2不适用于4N/8…等

如果你把每一级所做的所有工作相加,你将得到n(1+1/2+1/4….),等于O(logn)