我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

在信息技术中,它意味着:

  f(n)=O(g(n)) If there is suitable constant C and N0 independent on N, 
  such that
  for all N>N0  "C*g(n) > f(n) > 0" is true.

看来这个符号主要是从数学中提取出来的。

本文引用了一句话:D.E.Knuth,《大OMICRON、大OMEGA和大THETA》,1976年:

基于这里讨论的问题,我建议SIGACT以及计算机科学和数学期刊的编辑,采用上面定义的符号,除非有更好的替代方案很快就会发现。

今天是2016年,但我们今天仍然使用它。


在数学分析中,这意味着:

  lim (f(n)/g(n))=Constant; where n goes to +infinity

但即使在数学分析中,有时这个符号也用于表示“C*g(n)>f(n)>0”。

我从大学里就知道,这个符号是由德国数学家朗道(1877-1938)创造的

其他回答

对数运行时间(O(log n))本质上意味着运行时间与输入大小的对数成比例增长-例如,如果10个项目最多需要一定的时间x,100个项目最多花费2倍,10000个项目最多耗费4倍,那么它看起来像是O(log n)时间复杂性。

如果你正在寻找一个基于直觉的答案,我想为你提供两种解释。

想象一下一座很高的山,它的底部也很宽。要到达山顶,有两种方式:一种是一条围绕山顶螺旋延伸的专用通道,另一种是切割出的小露台状雕刻,以提供楼梯。现在,如果第一种方式在线性时间O(n)内到达,则第二种方式是O(logn)。想象一个算法,它接受整数n作为输入,并在时间上与n成比例地完成,那么它是O(n)或θ。

但O(log n)到底是什么?例如,如果一个>完整二叉树的高度是O(logn),这意味着什么?

我会将其重新表述为“完整二叉树的高度是logn”。如果一步一步向下遍历,计算完整的二叉树的高度将是O(logn)。

我无法理解如何用对数来识别函数时间

对数本质上是幂的倒数。因此,如果函数的每个“步骤”都在从原始项集中删除一个元素因子,那就是对数时间算法。

对于树的示例,您可以很容易地看到,当您继续遍历时,逐步降低节点级别会减少指数级的元素数量。浏览按姓名排序的电话簿的流行示例基本上等同于遍历二进制搜索树(中间页面是根元素,您可以在每个步骤中推断是向左还是向右)。

如果您有一个函数需要:

1 millisecond to complete if you have 2 elements.
2 milliseconds to complete if you have 4 elements.
3 milliseconds to complete if you have 8 elements.
4 milliseconds to complete if you have 16 elements.
...
n milliseconds to complete if you have 2^n elements.

然后需要log2(n)时间。广义地说,大O符号意味着关系只需要对大n成立,常数因子和小项可以忽略。

这个问题已经有了很多好的答案,但我相信我们真的错过了一个重要的答案,那就是图解的答案。

说一个完整的二叉树的高度是O(logn)是什么意思?

下图描述了一个二叉树。请注意,与上面的级别相比,每个级别包含的节点数量是两倍(因此是二进制的):

二进制搜索是一个复杂度为O(logn)的示例。假设图1中树底部的节点表示某个排序集合中的项目。二进制搜索是一种分而治之的算法,图中显示了我们需要(最多)4次比较才能找到我们在这个16项数据集中搜索的记录。

假设我们有一个包含32个元素的数据集。继续上面的图,发现我们现在需要5次比较才能找到我们正在搜索的内容,因为当我们乘以数据量时,树只增长了一层。结果,该算法的复杂性可以用对数级数来描述。

在一张普通纸上绘制对数(n)将生成曲线图,其中曲线的上升速度随着n的增加而减慢: