我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

在信息技术中,它意味着:

  f(n)=O(g(n)) If there is suitable constant C and N0 independent on N, 
  such that
  for all N>N0  "C*g(n) > f(n) > 0" is true.

看来这个符号主要是从数学中提取出来的。

本文引用了一句话:D.E.Knuth,《大OMICRON、大OMEGA和大THETA》,1976年:

基于这里讨论的问题,我建议SIGACT以及计算机科学和数学期刊的编辑,采用上面定义的符号,除非有更好的替代方案很快就会发现。

今天是2016年,但我们今天仍然使用它。


在数学分析中,这意味着:

  lim (f(n)/g(n))=Constant; where n goes to +infinity

但即使在数学分析中,有时这个符号也用于表示“C*g(n)>f(n)>0”。

我从大学里就知道,这个符号是由德国数学家朗道(1877-1938)创造的

其他回答

logb(n)是什么?

它是指在达到尺寸为1的截面之前,可以将长度为n的原木重复切成b等份的次数。

对数运行时间(O(log n))本质上意味着运行时间与输入大小的对数成比例增长-例如,如果10个项目最多需要一定的时间x,100个项目最多花费2倍,10000个项目最多耗费4倍,那么它看起来像是O(log n)时间复杂性。

完整的二进制示例是O(ln n),因为搜索结果如下:

1 2 3 4 5 6 7 8 9 10 11 12

搜索4个会产生3次命中:6次,3次,然后4次。而log2 12=3,这是一个很好的近似值,以多少命中需要。

O(logn)是衡量任何代码运行时性能的多项式时间复杂度之一。

我希望你已经听说过二进制搜索算法。

假设您必须在大小为N的数组中找到一个元素。

基本上,代码执行如下N不适用于2不适用于4N/8…等

如果你把每一级所做的所有工作相加,你将得到n(1+1/2+1/4….),等于O(logn)

简单地说:在算法的每一步,你都可以将工作减半。(渐近等价于第三、第四、…)