我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

我可以补充一些有趣的东西,很久以前我在科尔曼等的书中读过。现在,想象一个问题,我们必须在问题空间中找到解决方案。这个问题空间应该是有限的。

现在,如果你能证明,在你的算法的每一次迭代中,你都切断了这个空间的一部分,这不小于某个极限,这意味着你的算法在O(logN)时间内运行。

我应该指出,我们这里讨论的是相对分数极限,而不是绝对分数极限。二进制搜索是一个经典的例子。在每一步中,我们都会丢掉1/2的问题空间。但二进制搜索并不是唯一的例子。假设,你以某种方式证明了,在每一步中,你至少丢掉了1/128的问题空间。这意味着,您的程序仍然以O(logN)时间运行,尽管比二进制搜索慢得多。这是分析递归算法的一个很好的提示。通常可以证明,在每一步递归都不会使用几个变量,这会导致问题空间中某些分数的截断。

其他回答

对数运行时间(O(log n))本质上意味着运行时间与输入大小的对数成比例增长-例如,如果10个项目最多需要一定的时间x,100个项目最多花费2倍,10000个项目最多耗费4倍,那么它看起来像是O(log n)时间复杂性。

概述

其他人已经给出了很好的图表示例,例如树形图。我没有看到任何简单的代码示例。因此,除了我的解释,我还将提供一些带有简单打印语句的算法,以说明不同算法类别的复杂性。

首先,你需要对对数有一个大致的了解,你可以从https://en.wikipedia.org/wiki/Logarithm . 自然科学使用e和自然日志。工程弟子将使用log_10(对数基数10),计算机科学家将大量使用log_2(对数基数2),因为计算机是基于二进制的。有时你会看到自然log的缩写为ln(),工程师通常不使用_10,只使用log(),log_2缩写为lg()。所有类型的对数都以类似的方式增长,这就是为什么它们共享相同的log(n)类别。

当您查看下面的代码示例时,我建议您先查看O(1),然后查看O(n),然后再查看O(n^2)。在你擅长这些之后,再看看其他的。我已经包含了干净的示例和变体,以证明细微的变化仍然可以导致相同的分类。

你可以把O(1)、O(n)、O(logn)等看作是增长的类或类别。有些类别要比其他类别花费更多的时间。这些类别有助于我们对算法性能进行排序。有些随着输入n的增长而增长得更快。下表以数字形式显示了上述增长。在下表中,将log(n)视为log_2的上限。

各种大O类别的简单代码示例:

O(1)-恒定时间示例:

算法1:

算法1打印一次hello,它不依赖于n,所以它总是在恒定的时间内运行,所以它是O(1)。

print "hello";

算法2:

算法2打印hello 3次,但它不取决于输入大小。即使随着n的增长,该算法也将始终只打印hello 3次。也就是说,3是一个常数,所以这个算法也是O(1)。

print "hello";
print "hello";
print "hello";

O(log(n))-对数示例:

算法3-其行为类似于“log_2”

算法3演示了在log_2(n)中运行的算法。注意for循环的后操作将i的当前值乘以2,因此i从1到2到4到8到16到32。。。

for(int i = 1; i <= n; i = i * 2)
  print "hello";

算法4-其行为类似于“log_3”

算法4证明了log_3。注意我从1到3到9到27。。。

for(int i = 1; i <= n; i = i * 3)
  print "hello";

算法5-其行为类似于“log_1.02”

算法5很重要,因为它有助于表明,只要数字大于1,并且结果与自身重复相乘,那么你就在看对数算法。

for(double i = 1; i < n; i = i * 1.02)
  print "hello";

O(n)-线性时间示例:

算法6

这个算法很简单,可以打印n次hello。

for(int i = 0; i < n; i++)
  print "hello";

算法7

该算法显示了一种变体,它将打印hello n/2次。n/2=1/2*n。我们忽略1/2常数,看到这个算法是O(n)。

for(int i = 0; i < n; i = i + 2)
  print "hello";

O(n*log(n))-log(n)示例:

算法8

将其视为O(log(n))和O(n)的组合。for循环的嵌套帮助我们获得O(n*log(n))

for(int i = 0; i < n; i++)
  for(int j = 1; j < n; j = j * 2)
    print "hello";

算法9

算法9类似于算法8,但每个循环都允许变化,这仍然导致最终结果为O(n*log(n))

for(int i = 0; i < n; i = i + 2)
  for(int j = 1; j < n; j = j * 3)
    print "hello";

O(n^2)-n平方示例:

算法10

O(n^2)很容易通过循环的嵌套标准获得。

for(int i = 0; i < n; i++)
  for(int j = 0; j < n; j++)
    print "hello";

算法11

类似于算法10,但有一些变化。

for(int i = 0; i < n; i++)
  for(int j = 0; j < n; j = j + 2)
    print "hello";

O(n^3)-n立方示例:

算法12

这类似于算法10,但有3个循环而不是2个。

for(int i = 0; i < n; i++)
  for(int j = 0; j < n; j++)
    for(int k = 0; k < n; k++)
      print "hello";

算法13

类似于算法12,但具有一些仍然产生O(n^3)的变化。

for(int i = 0; i < n; i++)
  for(int j = 0; j < n + 5; j = j + 2)
    for(int k = 0; k < n; k = k + 3)
      print "hello";

总结

上面给出了几个直接的例子和变化,以帮助说明可以引入哪些细微的变化,而这些变化实际上不会改变分析。希望它能给你足够的洞察力。

这仅仅意味着该任务所需的时间随着log(n)的增加而增加(例如:n=10时为2s,n=100时为4s,…)。请阅读维基百科关于二进制搜索算法和大O符号的文章以了解更多的精度。

如果您有一个函数需要:

1 millisecond to complete if you have 2 elements.
2 milliseconds to complete if you have 4 elements.
3 milliseconds to complete if you have 8 elements.
4 milliseconds to complete if you have 16 elements.
...
n milliseconds to complete if you have 2^n elements.

然后需要log2(n)时间。广义地说,大O符号意味着关系只需要对大n成立,常数因子和小项可以忽略。

在信息技术中,它意味着:

  f(n)=O(g(n)) If there is suitable constant C and N0 independent on N, 
  such that
  for all N>N0  "C*g(n) > f(n) > 0" is true.

看来这个符号主要是从数学中提取出来的。

本文引用了一句话:D.E.Knuth,《大OMICRON、大OMEGA和大THETA》,1976年:

基于这里讨论的问题,我建议SIGACT以及计算机科学和数学期刊的编辑,采用上面定义的符号,除非有更好的替代方案很快就会发现。

今天是2016年,但我们今天仍然使用它。


在数学分析中,这意味着:

  lim (f(n)/g(n))=Constant; where n goes to +infinity

但即使在数学分析中,有时这个符号也用于表示“C*g(n)>f(n)>0”。

我从大学里就知道,这个符号是由德国数学家朗道(1877-1938)创造的