我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

我可以补充一些有趣的东西,很久以前我在科尔曼等的书中读过。现在,想象一个问题,我们必须在问题空间中找到解决方案。这个问题空间应该是有限的。

现在,如果你能证明,在你的算法的每一次迭代中,你都切断了这个空间的一部分,这不小于某个极限,这意味着你的算法在O(logN)时间内运行。

我应该指出,我们这里讨论的是相对分数极限,而不是绝对分数极限。二进制搜索是一个经典的例子。在每一步中,我们都会丢掉1/2的问题空间。但二进制搜索并不是唯一的例子。假设,你以某种方式证明了,在每一步中,你至少丢掉了1/128的问题空间。这意味着,您的程序仍然以O(logN)时间运行,尽管比二进制搜索慢得多。这是分析递归算法的一个很好的提示。通常可以证明,在每一步递归都不会使用几个变量,这会导致问题空间中某些分数的截断。

其他回答

我想补充一点,树的高度是从根到叶的最长路径的长度,节点的高度是该节点到叶的最大路径的长度。路径表示在两个节点之间遍历树时遇到的节点数。为了实现O(logn)时间复杂度,树应该是平衡的,这意味着任何节点的子节点之间的高度差应该小于或等于1。因此,树并不总是保证时间复杂度O(log n),除非它们是平衡的。实际上,在某些情况下,在最坏情况下,树中搜索的时间复杂度可能为O(n)。

你可以看看平衡树,比如AVL树。这项工作是在插入数据时平衡树,以便在树中搜索时保持(logn)的时间复杂度。

下面的解释是使用完全平衡的二叉树来帮助您理解我们如何获得对数时间复杂度。

二叉树是一种情况,其中大小为n的问题被划分为大小为n/2的子问题,直到我们达到大小为1的问题:

这就是你如何得到O(logn),这是在上面的树上需要完成的工作量,以获得解决方案。

具有O(logn)时间复杂度的常见算法是二进制搜索,其递归关系为T(n/2)+O(1),即在树的每个后续级别上,您将问题分成一半,并执行恒定数量的额外工作。

我可以举一个for循环的例子,也许一旦掌握了这个概念,在不同的上下文中理解起来会更简单。

这意味着在循环中,步长呈指数增长。例如。

for (i=1; i<=n; i=i*2) {;}

该程序的O表示法的复杂性为O(log(n))。让我们尝试手动循环(n介于512和1023之间(不包括1024):

step: 1   2   3   4   5    6    7    8     9     10
   i: 1   2   4   8   16   32   64   128   256   512

尽管n介于512和1023之间,但只进行了10次迭代。这是因为循环中的步骤呈指数增长,因此只需要10次迭代就可以到达终点。

x的对数(到a的底)是a^x的反函数。这就像说对数是指数的倒数。

现在试着这样看,如果指数增长非常快,那么对数增长(相反)非常慢。

O(n)和O(log(n))之间的差异是巨大的,类似于O(n(n)与O(a^n)之间的区别(a是常数)。

O(logN)基本上意味着时间线性上升,而N指数上升。因此,如果计算10个元素需要1秒,则计算100个元素需要2秒,计算1000个元素需要3秒,依此类推。

​当我们进行分而治之的算法(如二进制搜索)时,它是O(logn)。另一个例子是快速排序,每次我们将数组分成两部分,每次都需要O(N)时间才能找到一个枢轴元素。因此,N O(log N)

分治算法通常具有运行时间的logn成分。这来自于输入的重复减半。

在二进制搜索的情况下,每次迭代都会丢弃一半的输入。需要注意的是,在Big-O表示法中,log是以2为底的log。

编辑:如上所述,对数基数并不重要,但当推导算法的Big-O性能时,对数因子将来自减半,因此我认为它是基数2。