我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

我可以补充一些有趣的东西,很久以前我在科尔曼等的书中读过。现在,想象一个问题,我们必须在问题空间中找到解决方案。这个问题空间应该是有限的。

现在,如果你能证明,在你的算法的每一次迭代中,你都切断了这个空间的一部分,这不小于某个极限,这意味着你的算法在O(logN)时间内运行。

我应该指出,我们这里讨论的是相对分数极限,而不是绝对分数极限。二进制搜索是一个经典的例子。在每一步中,我们都会丢掉1/2的问题空间。但二进制搜索并不是唯一的例子。假设,你以某种方式证明了,在每一步中,你至少丢掉了1/128的问题空间。这意味着,您的程序仍然以O(logN)时间运行,尽管比二进制搜索慢得多。这是分析递归算法的一个很好的提示。通常可以证明,在每一步递归都不会使用几个变量,这会导致问题空间中某些分数的截断。

其他回答

分治算法通常具有运行时间的logn成分。这来自于输入的重复减半。

在二进制搜索的情况下,每次迭代都会丢弃一半的输入。需要注意的是,在Big-O表示法中,log是以2为底的log。

编辑:如上所述,对数基数并不重要,但当推导算法的Big-O性能时,对数因子将来自减半,因此我认为它是基数2。

概述

其他人已经给出了很好的图表示例,例如树形图。我没有看到任何简单的代码示例。因此,除了我的解释,我还将提供一些带有简单打印语句的算法,以说明不同算法类别的复杂性。

首先,你需要对对数有一个大致的了解,你可以从https://en.wikipedia.org/wiki/Logarithm . 自然科学使用e和自然日志。工程弟子将使用log_10(对数基数10),计算机科学家将大量使用log_2(对数基数2),因为计算机是基于二进制的。有时你会看到自然log的缩写为ln(),工程师通常不使用_10,只使用log(),log_2缩写为lg()。所有类型的对数都以类似的方式增长,这就是为什么它们共享相同的log(n)类别。

当您查看下面的代码示例时,我建议您先查看O(1),然后查看O(n),然后再查看O(n^2)。在你擅长这些之后,再看看其他的。我已经包含了干净的示例和变体,以证明细微的变化仍然可以导致相同的分类。

你可以把O(1)、O(n)、O(logn)等看作是增长的类或类别。有些类别要比其他类别花费更多的时间。这些类别有助于我们对算法性能进行排序。有些随着输入n的增长而增长得更快。下表以数字形式显示了上述增长。在下表中,将log(n)视为log_2的上限。

各种大O类别的简单代码示例:

O(1)-恒定时间示例:

算法1:

算法1打印一次hello,它不依赖于n,所以它总是在恒定的时间内运行,所以它是O(1)。

print "hello";

算法2:

算法2打印hello 3次,但它不取决于输入大小。即使随着n的增长,该算法也将始终只打印hello 3次。也就是说,3是一个常数,所以这个算法也是O(1)。

print "hello";
print "hello";
print "hello";

O(log(n))-对数示例:

算法3-其行为类似于“log_2”

算法3演示了在log_2(n)中运行的算法。注意for循环的后操作将i的当前值乘以2,因此i从1到2到4到8到16到32。。。

for(int i = 1; i <= n; i = i * 2)
  print "hello";

算法4-其行为类似于“log_3”

算法4证明了log_3。注意我从1到3到9到27。。。

for(int i = 1; i <= n; i = i * 3)
  print "hello";

算法5-其行为类似于“log_1.02”

算法5很重要,因为它有助于表明,只要数字大于1,并且结果与自身重复相乘,那么你就在看对数算法。

for(double i = 1; i < n; i = i * 1.02)
  print "hello";

O(n)-线性时间示例:

算法6

这个算法很简单,可以打印n次hello。

for(int i = 0; i < n; i++)
  print "hello";

算法7

该算法显示了一种变体,它将打印hello n/2次。n/2=1/2*n。我们忽略1/2常数,看到这个算法是O(n)。

for(int i = 0; i < n; i = i + 2)
  print "hello";

O(n*log(n))-log(n)示例:

算法8

将其视为O(log(n))和O(n)的组合。for循环的嵌套帮助我们获得O(n*log(n))

for(int i = 0; i < n; i++)
  for(int j = 1; j < n; j = j * 2)
    print "hello";

算法9

算法9类似于算法8,但每个循环都允许变化,这仍然导致最终结果为O(n*log(n))

for(int i = 0; i < n; i = i + 2)
  for(int j = 1; j < n; j = j * 3)
    print "hello";

O(n^2)-n平方示例:

算法10

O(n^2)很容易通过循环的嵌套标准获得。

for(int i = 0; i < n; i++)
  for(int j = 0; j < n; j++)
    print "hello";

算法11

类似于算法10,但有一些变化。

for(int i = 0; i < n; i++)
  for(int j = 0; j < n; j = j + 2)
    print "hello";

O(n^3)-n立方示例:

算法12

这类似于算法10,但有3个循环而不是2个。

for(int i = 0; i < n; i++)
  for(int j = 0; j < n; j++)
    for(int k = 0; k < n; k++)
      print "hello";

算法13

类似于算法12,但具有一些仍然产生O(n^3)的变化。

for(int i = 0; i < n; i++)
  for(int j = 0; j < n + 5; j = j + 2)
    for(int k = 0; k < n; k = k + 3)
      print "hello";

总结

上面给出了几个直接的例子和变化,以帮助说明可以引入哪些细微的变化,而这些变化实际上不会改变分析。希望它能给你足够的洞察力。

对数运行时间(O(log n))本质上意味着运行时间与输入大小的对数成比例增长-例如,如果10个项目最多需要一定的时间x,100个项目最多花费2倍,10000个项目最多耗费4倍,那么它看起来像是O(log n)时间复杂性。

我无法理解如何使用日志时间标识函数。

对数运行时间函数最常见的属性是:

选择下一个要执行某些操作的元素是多种可能性之一,并且只需要选择一个。

or

执行操作的元素是n的数字

这就是为什么,例如,在电话簿中查找人是O(logn)。你不需要检查电话簿上的每个人,就能找到合适的人;相反,你可以简单地根据他们的名字的字母顺序进行划分和征服,在每个部分中,你只需要探索每个部分的一个子集,就可以最终找到某人的电话号码。

当然,一本更大的电话簿仍然需要更长的时间,但它的增长速度不会像增加电话簿的比例那样快。


我们可以扩展电话簿示例,以比较其他类型的操作及其运行时间。我们将假设我们的电话簿中有具有唯一名称的业务(“黄页”)和可能没有唯一名称的人员(“白页”)。电话号码最多分配给一个人或一家公司。我们还将假设翻到特定页面需要恒定的时间。

以下是我们可能在电话簿上执行的一些操作的运行时间,从最快到最慢:

O(1)(在最坏的情况下):给定企业名称所在的页面和企业名称,找到电话号码。O(1)(在一般情况下):给定一个人的名字和他们的名字所在的页面,找到电话号码。O(log n):给定一个人的名字,在书中你还没有搜索到的部分的中途随机抽取一个点,然后检查这个人的名字是否在这个点上,从而找到电话号码。然后在书中人名所在的部分重复这个过程。(这是对人名的二进制搜索。)O(n):查找电话号码包含数字“5”的所有人。O(n):给定一个电话号码,找到拥有该号码的人或企业。O(n log n):打印机的办公室出现了混乱,我们的电话簿上的所有页面都以随机顺序插入。通过查看每一页上的名字,然后将该页放在新的空电话簿中的适当位置,修正顺序,使其正确。

对于以下示例,我们现在在打印机的办公室。电话簿等待邮寄给每位居民或企业,每个电话簿上都有一个标签,标明应该邮寄到哪里。每个人或企业都有一本电话簿。

O(n log n):我们想让电话簿个性化,所以我们将在他们指定的副本中找到每个人或企业的名字,然后在电话簿中圈出他们的名字,并为他们的惠顾写一封简短的感谢信。O(n2):办公室发生了一个错误,每个电话簿中的每个条目在电话号码末尾都有一个额外的“0”。取出一些白色,去掉每个零。O(n·n!):我们准备好把电话簿装到码头上了。不幸的是,原本要装书的机器人已经失控了:它正在把书按随机顺序放在卡车上!更糟糕的是,它把所有的书都装到卡车上,然后检查它们的顺序是否正确,如果不正确,它就把它们卸下来,重新开始。(这是可怕的bogo类型。)O(nn):你把机器人修好,这样它就能正确地装载东西。第二天,你的一个同事对你开了个玩笑,把装卸台机器人连接到自动打印系统上。每次机器人去装载一本原版书时,工厂打印机都会对所有的电话簿进行重复打印!幸运的是,机器人的错误检测系统足够复杂,当它遇到要加载的复制书时,它不会尝试打印更多的副本,但它仍然必须加载已打印的每一本原始和复制书。

分而治之范式中的算法具有复杂性O(logn)。这里有一个例子,计算你自己的幂函数,

int power(int x, unsigned int y)
{
    int temp;
    if( y == 0)
        return 1;
    temp = power(x, y/2);
    if (y%2 == 0)
        return temp*temp;
    else
        return x*temp*temp;
}

从…起http://www.geeksforgeeks.org/write-a-c-program-to-calculate-powxn/