我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

O(logN)基本上意味着时间线性上升,而N指数上升。因此,如果计算10个元素需要1秒,则计算100个元素需要2秒,计算1000个元素需要3秒,依此类推。

​当我们进行分而治之的算法(如二进制搜索)时,它是O(logn)。另一个例子是快速排序,每次我们将数组分成两部分,每次都需要O(N)时间才能找到一个枢轴元素。因此,N O(log N)

其他回答

完整的二进制示例是O(ln n),因为搜索结果如下:

1 2 3 4 5 6 7 8 9 10 11 12

搜索4个会产生3次命中:6次,3次,然后4次。而log2 12=3,这是一个很好的近似值,以多少命中需要。

我可以补充一些有趣的东西,很久以前我在科尔曼等的书中读过。现在,想象一个问题,我们必须在问题空间中找到解决方案。这个问题空间应该是有限的。

现在,如果你能证明,在你的算法的每一次迭代中,你都切断了这个空间的一部分,这不小于某个极限,这意味着你的算法在O(logN)时间内运行。

我应该指出,我们这里讨论的是相对分数极限,而不是绝对分数极限。二进制搜索是一个经典的例子。在每一步中,我们都会丢掉1/2的问题空间。但二进制搜索并不是唯一的例子。假设,你以某种方式证明了,在每一步中,你至少丢掉了1/128的问题空间。这意味着,您的程序仍然以O(logN)时间运行,尽管比二进制搜索慢得多。这是分析递归算法的一个很好的提示。通常可以证明,在每一步递归都不会使用几个变量,这会导致问题空间中某些分数的截断。

你可以通过说时间与N中的位数成正比来直观地想到O(log N)。

如果一个操作对输入的每个数字或位执行恒定的时间工作,则整个操作所花费的时间将与输入中的数字或位的数量成比例,而不是与输入的大小成比例;因此是O(log N)而不是O(N)。

如果一个操作做出一系列恒定的时间决定,每个决定将要考虑的输入的大小减半(减少3、4、5…的因子),那么整个过程将花费与输入大小N的对数基2(基3、基4、基5…)成比例的时间,而不是O(N)。

等等

下面的解释是使用完全平衡的二叉树来帮助您理解我们如何获得对数时间复杂度。

二叉树是一种情况,其中大小为n的问题被划分为大小为n/2的子问题,直到我们达到大小为1的问题:

这就是你如何得到O(logn),这是在上面的树上需要完成的工作量,以获得解决方案。

具有O(logn)时间复杂度的常见算法是二进制搜索,其递归关系为T(n/2)+O(1),即在树的每个后续级别上,您将问题分成一半,并执行恒定数量的额外工作。

O(logn)有点误导,更准确地说,它是O(log2n),即(以2为底的对数)。

平衡二叉树的高度是O(log2n),因为每个节点都有两个(注意log2n中的“两个”)子节点。因此,具有n个节点的树的高度为log2n。

另一个例子是二进制搜索,它的运行时间为O(log2n),因为在每一步中,您都将搜索空间除以2。