我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

O(logN)基本上意味着时间线性上升,而N指数上升。因此,如果计算10个元素需要1秒,则计算100个元素需要2秒,计算1000个元素需要3秒,依此类推。

​当我们进行分而治之的算法(如二进制搜索)时,它是O(logn)。另一个例子是快速排序,每次我们将数组分成两部分,每次都需要O(N)时间才能找到一个枢轴元素。因此,N O(log N)

其他回答

实际上,如果您有一个n个元素的列表,并从该列表中创建一个二叉树(就像在除法和征服算法中一样),您将一直除以2,直到达到大小为1的列表(树叶)。

在第一步,你除以2。然后,您有2个列表(2^1),将每个列表除以2,因此您有4个列表(2*2),然后再进行一次除法,您有8个列表(3^3),依此类推,直到列表大小为1

这给出了一个等式:

n/(2^步)=1<=>n=2^步<=>lg(n)=步

(取每边的lg,lg为对数基数2)

在信息技术中,它意味着:

  f(n)=O(g(n)) If there is suitable constant C and N0 independent on N, 
  such that
  for all N>N0  "C*g(n) > f(n) > 0" is true.

看来这个符号主要是从数学中提取出来的。

本文引用了一句话:D.E.Knuth,《大OMICRON、大OMEGA和大THETA》,1976年:

基于这里讨论的问题,我建议SIGACT以及计算机科学和数学期刊的编辑,采用上面定义的符号,除非有更好的替代方案很快就会发现。

今天是2016年,但我们今天仍然使用它。


在数学分析中,这意味着:

  lim (f(n)/g(n))=Constant; where n goes to +infinity

但即使在数学分析中,有时这个符号也用于表示“C*g(n)>f(n)>0”。

我从大学里就知道,这个符号是由德国数学家朗道(1877-1938)创造的

分而治之范式中的算法具有复杂性O(logn)。这里有一个例子,计算你自己的幂函数,

int power(int x, unsigned int y)
{
    int temp;
    if( y == 0)
        return 1;
    temp = power(x, y/2);
    if (y%2 == 0)
        return temp*temp;
    else
        return x*temp*temp;
}

从…起http://www.geeksforgeeks.org/write-a-c-program-to-calculate-powxn/

O(logn)是衡量任何代码运行时性能的多项式时间复杂度之一。

我希望你已经听说过二进制搜索算法。

假设您必须在大小为N的数组中找到一个元素。

基本上,代码执行如下N不适用于2不适用于4N/8…等

如果你把每一级所做的所有工作相加,你将得到n(1+1/2+1/4….),等于O(logn)

我一直以来在脑海中想象运行在O(log n)中的算法的最佳方式如下:

如果您将问题大小增加一个乘法量(即将其大小乘以10),则做功仅增加一个加法量。

将此应用于二叉树问题,这样您就有了一个很好的应用程序:如果将二叉树中的节点数加倍,则高度仅增加1(一个加法量)。如果再增加一倍,它仍然只增加了1。(显然,我假设它保持平衡)。这样,当问题规模成倍增加时,你的工作量不会加倍,而只是做了稍微多一点的工作。这就是为什么O(logn)算法非常棒的原因。