我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

O(logn)有点误导,更准确地说,它是O(log2n),即(以2为底的对数)。

平衡二叉树的高度是O(log2n),因为每个节点都有两个(注意log2n中的“两个”)子节点。因此,具有n个节点的树的高度为log2n。

另一个例子是二进制搜索,它的运行时间为O(log2n),因为在每一步中,您都将搜索空间除以2。

其他回答

我可以补充一些有趣的东西,很久以前我在科尔曼等的书中读过。现在,想象一个问题,我们必须在问题空间中找到解决方案。这个问题空间应该是有限的。

现在,如果你能证明,在你的算法的每一次迭代中,你都切断了这个空间的一部分,这不小于某个极限,这意味着你的算法在O(logN)时间内运行。

我应该指出,我们这里讨论的是相对分数极限,而不是绝对分数极限。二进制搜索是一个经典的例子。在每一步中,我们都会丢掉1/2的问题空间。但二进制搜索并不是唯一的例子。假设,你以某种方式证明了,在每一步中,你至少丢掉了1/128的问题空间。这意味着,您的程序仍然以O(logN)时间运行,尽管比二进制搜索慢得多。这是分析递归算法的一个很好的提示。通常可以证明,在每一步递归都不会使用几个变量,这会导致问题空间中某些分数的截断。

如果您有一个函数需要:

1 millisecond to complete if you have 2 elements.
2 milliseconds to complete if you have 4 elements.
3 milliseconds to complete if you have 8 elements.
4 milliseconds to complete if you have 16 elements.
...
n milliseconds to complete if you have 2^n elements.

然后需要log2(n)时间。广义地说,大O符号意味着关系只需要对大n成立,常数因子和小项可以忽略。

这两种情况需要O(log n)时间

case 1: f(int n) {
      int i;
      for (i = 1; i < n; i=i*2)
        printf("%d", i);
    }


 case 2  : f(int n) {
      int i;
      for (i = n; i>=1 ; i=i/2)
        printf("%d", i);
    }

下面的解释是使用完全平衡的二叉树来帮助您理解我们如何获得对数时间复杂度。

二叉树是一种情况,其中大小为n的问题被划分为大小为n/2的子问题,直到我们达到大小为1的问题:

这就是你如何得到O(logn),这是在上面的树上需要完成的工作量,以获得解决方案。

具有O(logn)时间复杂度的常见算法是二进制搜索,其递归关系为T(n/2)+O(1),即在树的每个后续级别上,您将问题分成一半,并执行恒定数量的额外工作。

logb(n)是什么?

它是指在达到尺寸为1的截面之前,可以将长度为n的原木重复切成b等份的次数。