对数
好的,让我们试着完全理解对数到底是什么。
想象一下,我们有一根绳子,把它拴在一匹马身上。如果绳子直接系在马身上,那么马拉离(例如,从人身上)所需的力直接为1。
现在想象绳子绕在一根杆子上。要想脱身的马现在必须用力拉很多倍。次数取决于绳索的粗糙度和杆的大小,但我们假设它会将一个人的力量乘以10(当绳索完全转弯时)。
现在,如果绳子绕一圈,马需要用力拉10倍。如果人类决定让马变得很困难,他可以再次将绳子绕在一根杆子上,使它的力量增加10倍。第三个循环将再次将强度增加10倍。
我们可以看到,对于每个循环,值增加10。获得任何数字所需的圈数称为数字的对数,即我们需要3个柱将你的力量乘以1000倍,需要6个柱将力量乘以1000000。
3是1000的对数,6是1000000的对数(以10为底)。
那么O(log n)实际上是什么意思?
在上面的例子中,我们的“增长率”是O(logn)。每增加一圈,我们的绳子所能承受的力就会增加10倍:
Turns | Max Force
0 | 1
1 | 10
2 | 100
3 | 1000
4 | 10000
n | 10^n
现在上面的例子确实使用了基数10,但幸运的是,当我们讨论大o符号时,对数的基数是微不足道的。
现在,让我们假设您正在尝试猜测1-100之间的数字。
Your Friend: Guess my number between 1-100!
Your Guess: 50
Your Friend: Lower!
Your Guess: 25
Your Friend: Lower!
Your Guess: 13
Your Friend: Higher!
Your Guess: 19
Your Friend: Higher!
Your Friend: 22
Your Guess: Lower!
Your Guess: 20
Your Friend: Higher!
Your Guess: 21
Your Friend: YOU GOT IT!
现在你猜了7次才猜对。但这里的关系是什么?你可以从每一个额外的猜测中猜出最多的项目是什么?
Guesses | Items
1 | 2
2 | 4
3 | 8
4 | 16
5 | 32
6 | 64
7 | 128
10 | 1024
使用该图,我们可以看到,如果我们使用二进制搜索来猜测1-100之间的数字,最多需要7次尝试。如果我们有128个数字,我们也可以在7次尝试中猜出数字,但129个数字最多需要8次尝试(与对数相关,这里我们需要7次猜测128个值范围,10次猜测1024个值范围。7是128的对数,10是1024的对数(以2为底))。
注意,我用粗体字“最多”。大O符号总是指更坏的情况。如果你运气好,你可以一次猜出数字,所以最好的情况是O(1),但那是另一回事。
我们可以看到,我们的数据集正在缩小。识别算法是否具有对数时间的一个很好的经验法则是查看数据集在每次迭代后是否按一定顺序收缩
O(n log n)呢?
你最终会遇到一个线性时间O(n log(n))算法。上述经验法则再次适用,但这一次对数函数必须运行n次,例如,将列表的大小减少n次,这在合并排序等算法中发生。
您可以很容易地确定算法时间是否为n log n。寻找一个在列表(O(n))中迭代的外部循环。然后查看是否存在内部循环。如果内部循环在每次迭代时都在切割/减少数据集,则该循环为(O(logn)),因此整个算法为=O(n logn)。
免责声明:绳对数示例摘自W.Sawyer的《数学家的喜悦》一书。