我正在学习大O符号的运行时间和摊销时间。我理解O(n)线性时间的概念,这意味着输入的大小成比例地影响算法的增长。。。例如,二次时间O(n2)等也是如此。甚至是通过阶乘增长的算法,如置换生成器,其O(n!)次。

例如,以下函数为O(n),因为算法与其输入n成比例增长:

f(int n) {
  int i;
  for (i = 0; i < n; ++i)
    printf("%d", i);
}

类似地,如果存在嵌套循环,时间将为O(n2)。

但O(log n)到底是什么?例如,说一个完整的二叉树的高度是O(log n)是什么意思?

我确实知道(也许不是很详细)对数是什么,从这个意义上说:log10 100=2,但我不知道如何识别具有对数时间的函数。


当前回答

首先,我建议您阅读以下书籍:;

算法(第4版)

下面是一些函数及其预期的复杂性。数字表示语句执行频率。

以下Big-O复杂性图表也取自bigocheatsheet

最后,非常简单的展示展示了它是如何计算的;

剖析程序的语句执行频率。

分析程序的运行时间(示例)。

其他回答

实际上,如果您有一个n个元素的列表,并从该列表中创建一个二叉树(就像在除法和征服算法中一样),您将一直除以2,直到达到大小为1的列表(树叶)。

在第一步,你除以2。然后,您有2个列表(2^1),将每个列表除以2,因此您有4个列表(2*2),然后再进行一次除法,您有8个列表(3^3),依此类推,直到列表大小为1

这给出了一个等式:

n/(2^步)=1<=>n=2^步<=>lg(n)=步

(取每边的lg,lg为对数基数2)

如果您有一个函数需要:

1 millisecond to complete if you have 2 elements.
2 milliseconds to complete if you have 4 elements.
3 milliseconds to complete if you have 8 elements.
4 milliseconds to complete if you have 16 elements.
...
n milliseconds to complete if you have 2^n elements.

然后需要log2(n)时间。广义地说,大O符号意味着关系只需要对大n成立,常数因子和小项可以忽略。

如果你在图形计算器或类似的东西上绘制一个对数函数,你会发现它的上升速度非常慢——甚至比线性函数还要慢。

这就是为什么对数时间复杂度算法备受追捧的原因:即使对于真正大的n(例如,假设n=10^8),它们的性能也超出了可接受的范围。

每次编写算法或代码时,我们都会尝试分析其渐近复杂性。它不同于它的时间复杂性。

渐近复杂度是算法执行时间的行为,而时间复杂度是实际执行时间。但有些人可以互换使用这些术语。

因为时间复杂度取决于各种参数。1.物理系统2.编程语言3.编码样式4.还有更多。。。。。。

实际执行时间不是一个很好的分析指标。

相反,我们将输入大小作为参数,因为无论代码是什么,输入都是相同的。因此,执行时间是输入大小的函数。

以下是线性时间算法的示例

线性搜索给定n个输入元素,要搜索数组中的元素,最多需要“n”个比较。换句话说,无论你使用什么编程语言,你喜欢什么编码风格,在什么系统上执行它。在最坏的情况下,它只需要n次比较。执行时间与输入大小成线性比例。

它不仅仅是搜索,无论是什么工作(增量、比较或任何操作),它都是输入大小的函数。

所以当你说任何算法都是O(logn)这意味着执行时间是输入大小n的log倍。

随着输入大小的增加,完成的工作(这里是执行时间)增加。(因此,比例)

      n      Work
      2     1 units of work
      4     2 units of work
      8     3 units of work

随着输入大小的增加,所做的工作也会增加,并且与任何机器无关。如果你试图找出工作单位的价值它实际上取决于上述参数。它会根据系统和所有参数而改变。

O(logN)基本上意味着时间线性上升,而N指数上升。因此,如果计算10个元素需要1秒,则计算100个元素需要2秒,计算1000个元素需要3秒,依此类推。

​当我们进行分而治之的算法(如二进制搜索)时,它是O(logn)。另一个例子是快速排序,每次我们将数组分成两部分,每次都需要O(N)时间才能找到一个枢轴元素。因此,N O(log N)