我正在寻找某种公式或算法来确定给定RGB值的颜色的亮度。我知道这不像把RGB值加在一起那么简单,更高的总和更亮,但我有点不知所措,不知道从哪里开始。


当前回答

基于所有这些答案,我的简单结论是,对于大多数实际用例,您只需要:

brightness = 0.2*r + 0.7*g + 0.1*b 

当r,g,b值在0到255之间时,亮度范围也在0(=黑)到255(=白)之间。

可以对它进行微调,但通常没有必要。

其他回答

我认为你正在寻找的是RGB ->流光转换公式。

光度/数字ITU BT.709:

Y = 0.2126 R + 0.7152 G + 0.0722 B

数字ITU BT.601(给予R和B部分更多权重):

Y = 0.299 R + 0.587 G + 0.114 B

如果你愿意用准确性来换取性能,有两个近似公式:

Y = 0.33 R + 0.5 G + 0.16 B

Y = 0.375 R + 0.5 G + 0.125 B

这些可以快速计算为

Y = (R+R+B+G+G+G)/6

Y = (R+R+R+B+G+G+G+G)>>3

我已经在接受的答案中对三种算法做了比较。我循环生成颜色,大约每400个颜色使用一次。每种颜色由2x2像素表示,颜色从最深到最浅(从左到右,从上到下)排序。

第一张图片-亮度(相对)

0.2126 * R + 0.7152 * G + 0.0722 * B

第二张图片- http://www.w3.org/TR/AERT#color-contrast

0.299 * R + 0.587 * G + 0.114 * B

第三张图片- HSP颜色模型

sqrt(0.299 * R^2 + 0.587 * G^2 + 0.114 * B^2)

第4张图- WCAG 2.0 SC 1.4.3相对亮度和对比度公式(见@Synchro的答案在这里)

根据一行中的颜色数量,有时可以在第一张和第二张图片上发现图案。我从第3或第4算法的图片上没有发现任何模式。

如果我必须选择,我会选择算法3,因为它更容易实现,比4快33%。

有趣的是,RGB=>HSV的公式只是使用v=MAX3(r,g,b)。换句话说,你可以用(r,g,b)的最大值作为HSV中的V。

我查了一下,在Hearn & Baker的575页,这也是他们计算“价值”的方法。

再加上其他人说的话:

所有这些方程在实践中都工作得很好,但如果你需要非常精确,你必须首先将颜色转换为线性颜色空间(应用逆图像-gamma),对原色进行权重平均,如果你想显示颜色- 把亮度调回监控器伽马。

在深灰色中,忽略伽玛和正确伽玛之间的亮度差异高达20%。

这里有一小段C代码,可以正确地计算可感知的亮度。

// reverses the rgb gamma
#define inverseGamma(t) (((t) <= 0.0404482362771076) ? ((t)/12.92) : pow(((t) + 0.055)/1.055, 2.4))

//CIE L*a*b* f function (used to convert XYZ to L*a*b*)  http://en.wikipedia.org/wiki/Lab_color_space
#define LABF(t) ((t >= 8.85645167903563082e-3) ? powf(t,0.333333333333333) : (841.0/108.0)*(t) + (4.0/29.0))


float
rgbToCIEL(PIXEL p)
{
   float y;
   float r=p.r/255.0;
   float g=p.g/255.0;
   float b=p.b/255.0;

   r=inverseGamma(r);
   g=inverseGamma(g);
   b=inverseGamma(b);

   //Observer = 2°, Illuminant = D65 
   y = 0.2125862307855955516*r + 0.7151703037034108499*g + 0.07220049864333622685*b;

   // At this point we've done RGBtoXYZ now do XYZ to Lab

   // y /= WHITEPOINT_Y; The white point for y in D65 is 1.0

    y = LABF(y);

   /* This is the "normal conversion which produces values scaled to 100
    Lab.L = 116.0*y - 16.0;
   */
   return(1.16*y - 0.16); // return values for 0.0 >=L <=1.0
}