我正在寻找某种公式或算法来确定给定RGB值的颜色的亮度。我知道这不像把RGB值加在一起那么简单,更高的总和更亮,但我有点不知所措,不知道从哪里开始。
当前回答
我认为你正在寻找的是RGB ->流光转换公式。
光度/数字ITU BT.709:
Y = 0.2126 R + 0.7152 G + 0.0722 B
数字ITU BT.601(给予R和B部分更多权重):
Y = 0.299 R + 0.587 G + 0.114 B
如果你愿意用准确性来换取性能,有两个近似公式:
Y = 0.33 R + 0.5 G + 0.16 B
Y = 0.375 R + 0.5 G + 0.125 B
这些可以快速计算为
Y = (R+R+B+G+G+G)/6
Y = (R+R+R+B+G+G+G+G)>>3
其他回答
我想知道这些rgb系数是如何确定的。我自己做了一个实验,得出了以下结论:
Y = 0.267 R + 0.642 G + 0.091 B
接近,但与长期建立的ITU系数明显不同。我想知道这些系数是否对每个观察者来说都是不同的,因为我们眼睛视网膜上的视锥细胞和视杆细胞的数量都是不同的,尤其是不同类型的视锥细胞之间的比例可能是不同的。
供参考:
这是BT . 709:
Y = 0.2126 R + 0.7152 G + 0.0722 B
这是BT . 601:
Y = 0.299 R + 0.587 G + 0.114 B
我在亮红色、亮绿色和亮蓝色的背景上快速移动一个小灰色条,并调整灰色,直到它尽可能地融合在一起。我还用其他色调重复了这个测试。我在不同的显示器上重复了测试,即使是gamma因子固定为3.0的显示器,但在我看来都是一样的。更重要的是,ITU系数对我的眼睛来说是错误的。
是的,我对颜色的视觉应该是正常的。
The inverse-gamma formula by Jive Dadson needs to have the half-adjust removed when implemented in Javascript, i.e. the return from function gam_sRGB needs to be return int(v*255); not return int(v*255+.5); Half-adjust rounds up, and this can cause a value one too high on a R=G=B i.e. grey colour triad. Greyscale conversion on a R=G=B triad should produce a value equal to R; it's one proof that the formula is valid. See Nine Shades of Greyscale for the formula in action (without the half-adjust).
下面是将sRGB图像转换为灰度的唯一正确算法,如在浏览器等中使用。
在计算内积之前,有必要对颜色空间应用伽玛函数的逆。然后你把函数应用到减少的值上。未能合并gamma函数可能导致高达20%的误差。
对于典型的计算机,颜色空间是sRGB。sRGB的正确数字约为。0.21 0.72 0.07。sRGB的Gamma是一个复合函数,近似取幂1/(2.2)。这是c++的全部内容。
// sRGB luminance(Y) values
const double rY = 0.212655;
const double gY = 0.715158;
const double bY = 0.072187;
// Inverse of sRGB "gamma" function. (approx 2.2)
double inv_gam_sRGB(int ic) {
double c = ic/255.0;
if ( c <= 0.04045 )
return c/12.92;
else
return pow(((c+0.055)/(1.055)),2.4);
}
// sRGB "gamma" function (approx 2.2)
int gam_sRGB(double v) {
if(v<=0.0031308)
v *= 12.92;
else
v = 1.055*pow(v,1.0/2.4)-0.055;
return int(v*255+0.5); // This is correct in C++. Other languages may not
// require +0.5
}
// GRAY VALUE ("brightness")
int gray(int r, int g, int b) {
return gam_sRGB(
rY*inv_gam_sRGB(r) +
gY*inv_gam_sRGB(g) +
bY*inv_gam_sRGB(b)
);
}
HSV色彩空间应该做的把戏,看维基百科文章取决于你正在工作的语言,你可能会得到一个库转换。
H是色调,是颜色的数值(即红色,绿色…)
S是颜色的饱和度,即它有多“强烈”
V是颜色的亮度。
我已经在接受的答案中对三种算法做了比较。我循环生成颜色,大约每400个颜色使用一次。每种颜色由2x2像素表示,颜色从最深到最浅(从左到右,从上到下)排序。
第一张图片-亮度(相对)
0.2126 * R + 0.7152 * G + 0.0722 * B
第二张图片- http://www.w3.org/TR/AERT#color-contrast
0.299 * R + 0.587 * G + 0.114 * B
第三张图片- HSP颜色模型
sqrt(0.299 * R^2 + 0.587 * G^2 + 0.114 * B^2)
第4张图- WCAG 2.0 SC 1.4.3相对亮度和对比度公式(见@Synchro的答案在这里)
根据一行中的颜色数量,有时可以在第一张和第二张图片上发现图案。我从第3或第4算法的图片上没有发现任何模式。
如果我必须选择,我会选择算法3,因为它更容易实现,比4快33%。
推荐文章
- 从matplotlib中的颜色映射中获取单个颜色
- 更改UITextField和UITextView光标/插入符颜色
- 设置Matplotlib色条大小以匹配图形
- Matplotlib:如何在图像上绘制矩形
- 用jQuery检查图像是否加载(无错误)
- 是否可以在。net中以彩色方式写入控制台?
- 用标志图像替换H1文本:SEO和可访问性的最佳方法?
- 如何在CSS中定义颜色作为变量?
- CSS十六进制RGBA?
- 如何从Linux上的命令行将一系列图像转换为PDF ?
- 如何获取android.widget.ImageView的宽度和高度?
- 通过编程方式从Android内置的Gallery应用程序中获取/选择一张图像
- 在CSS中为PNG图像删除阴影
- 将HTML渲染为图像
- JPG和JPEG图像格式