我正在寻找某种公式或算法来确定给定RGB值的颜色的亮度。我知道这不像把RGB值加在一起那么简单,更高的总和更亮,但我有点不知所措,不知道从哪里开始。


当前回答

我想知道这些rgb系数是如何确定的。我自己做了一个实验,得出了以下结论:

Y = 0.267 R + 0.642 G + 0.091 B

接近,但与长期建立的ITU系数明显不同。我想知道这些系数是否对每个观察者来说都是不同的,因为我们眼睛视网膜上的视锥细胞和视杆细胞的数量都是不同的,尤其是不同类型的视锥细胞之间的比例可能是不同的。

供参考:

这是BT . 709:

Y = 0.2126 R + 0.7152 G + 0.0722 B

这是BT . 601:

Y = 0.299 R + 0.587 G + 0.114 B

我在亮红色、亮绿色和亮蓝色的背景上快速移动一个小灰色条,并调整灰色,直到它尽可能地融合在一起。我还用其他色调重复了这个测试。我在不同的显示器上重复了测试,即使是gamma因子固定为3.0的显示器,但在我看来都是一样的。更重要的是,ITU系数对我的眼睛来说是错误的。

是的,我对颜色的视觉应该是正常的。

其他回答

这里有一小段C代码,可以正确地计算可感知的亮度。

// reverses the rgb gamma
#define inverseGamma(t) (((t) <= 0.0404482362771076) ? ((t)/12.92) : pow(((t) + 0.055)/1.055, 2.4))

//CIE L*a*b* f function (used to convert XYZ to L*a*b*)  http://en.wikipedia.org/wiki/Lab_color_space
#define LABF(t) ((t >= 8.85645167903563082e-3) ? powf(t,0.333333333333333) : (841.0/108.0)*(t) + (4.0/29.0))


float
rgbToCIEL(PIXEL p)
{
   float y;
   float r=p.r/255.0;
   float g=p.g/255.0;
   float b=p.b/255.0;

   r=inverseGamma(r);
   g=inverseGamma(g);
   b=inverseGamma(b);

   //Observer = 2°, Illuminant = D65 
   y = 0.2125862307855955516*r + 0.7151703037034108499*g + 0.07220049864333622685*b;

   // At this point we've done RGBtoXYZ now do XYZ to Lab

   // y /= WHITEPOINT_Y; The white point for y in D65 is 1.0

    y = LABF(y);

   /* This is the "normal conversion which produces values scaled to 100
    Lab.L = 116.0*y - 16.0;
   */
   return(1.16*y - 0.16); // return values for 0.0 >=L <=1.0
}

HSV的“V”可能就是你要找的。MATLAB有一个rgb2hsv函数,之前引用的维基百科文章充满了伪代码。如果RGB2HSV转换不可行,则较不准确的模型将是图像的灰度版本。

把这看作是对Myndex的精彩回答的补充。正如他(和其他人)解释的那样,计算RGB颜色的相对亮度(和感知亮度)的算法是设计用于线性RGB值的。你不能只是将它们应用到原始sRGB值上,并希望得到相同的结果。

理论上,这一切听起来都很棒,但我真的需要亲眼看看证据,所以,受到彼得·赫塔克(Petr Hurtak)的颜色渐变的启发,我自己做了一个。它们说明了两种最常见的算法(ITU-R建议BT.601和BT.709),并清楚地说明了为什么应该使用线性值(而不是伽玛校正值)进行计算。

首先,下面是旧的ITU BT.601算法的结果。左边的使用原始sRGB值。右边的使用线性值。

ITU-R BT.601颜色亮度梯度

0.299 r + 0.587 g + 0.114 b

在这个分辨率下,左边的照片实际上看起来非常好!但如果你仔细观察,你会发现一些问题。在更高的分辨率下,不需要的人工制品更加明显:

线性的不受这些影响,但是有很多干扰。让我们将其与ITU-R建议BT.709进行比较……

ITU-R BT.709颜色亮度梯度

0.2126 r + 0.7152 g + 0.0722 b

哦男孩。显然不打算与原始sRGB值一起使用!然而,这正是大多数人所做的!

在高分辨率下,你可以真正看到这个算法在使用线性值时是多么有效。它没有之前那个那么多噪音。虽然这些算法都不是完美的,但这个算法已经是最好的了。

我想知道这些rgb系数是如何确定的。我自己做了一个实验,得出了以下结论:

Y = 0.267 R + 0.642 G + 0.091 B

接近,但与长期建立的ITU系数明显不同。我想知道这些系数是否对每个观察者来说都是不同的,因为我们眼睛视网膜上的视锥细胞和视杆细胞的数量都是不同的,尤其是不同类型的视锥细胞之间的比例可能是不同的。

供参考:

这是BT . 709:

Y = 0.2126 R + 0.7152 G + 0.0722 B

这是BT . 601:

Y = 0.299 R + 0.587 G + 0.114 B

我在亮红色、亮绿色和亮蓝色的背景上快速移动一个小灰色条,并调整灰色,直到它尽可能地融合在一起。我还用其他色调重复了这个测试。我在不同的显示器上重复了测试,即使是gamma因子固定为3.0的显示器,但在我看来都是一样的。更重要的是,ITU系数对我的眼睛来说是错误的。

是的,我对颜色的视觉应该是正常的。

下面是将sRGB图像转换为灰度的唯一正确算法,如在浏览器等中使用。

在计算内积之前,有必要对颜色空间应用伽玛函数的逆。然后你把函数应用到减少的值上。未能合并gamma函数可能导致高达20%的误差。

对于典型的计算机,颜色空间是sRGB。sRGB的正确数字约为。0.21 0.72 0.07。sRGB的Gamma是一个复合函数,近似取幂1/(2.2)。这是c++的全部内容。

// sRGB luminance(Y) values
const double rY = 0.212655;
const double gY = 0.715158;
const double bY = 0.072187;

// Inverse of sRGB "gamma" function. (approx 2.2)
double inv_gam_sRGB(int ic) {
    double c = ic/255.0;
    if ( c <= 0.04045 )
        return c/12.92;
    else 
        return pow(((c+0.055)/(1.055)),2.4);
}

// sRGB "gamma" function (approx 2.2)
int gam_sRGB(double v) {
    if(v<=0.0031308)
      v *= 12.92;
    else 
      v = 1.055*pow(v,1.0/2.4)-0.055;
    return int(v*255+0.5); // This is correct in C++. Other languages may not
                           // require +0.5
}

// GRAY VALUE ("brightness")
int gray(int r, int g, int b) {
    return gam_sRGB(
            rY*inv_gam_sRGB(r) +
            gY*inv_gam_sRGB(g) +
            bY*inv_gam_sRGB(b)
    );
}