我正在寻找某种公式或算法来确定给定RGB值的颜色的亮度。我知道这不像把RGB值加在一起那么简单,更高的总和更亮,但我有点不知所措,不知道从哪里开始。


当前回答

下面是将sRGB图像转换为灰度的唯一正确算法,如在浏览器等中使用。

在计算内积之前,有必要对颜色空间应用伽玛函数的逆。然后你把函数应用到减少的值上。未能合并gamma函数可能导致高达20%的误差。

对于典型的计算机,颜色空间是sRGB。sRGB的正确数字约为。0.21 0.72 0.07。sRGB的Gamma是一个复合函数,近似取幂1/(2.2)。这是c++的全部内容。

// sRGB luminance(Y) values
const double rY = 0.212655;
const double gY = 0.715158;
const double bY = 0.072187;

// Inverse of sRGB "gamma" function. (approx 2.2)
double inv_gam_sRGB(int ic) {
    double c = ic/255.0;
    if ( c <= 0.04045 )
        return c/12.92;
    else 
        return pow(((c+0.055)/(1.055)),2.4);
}

// sRGB "gamma" function (approx 2.2)
int gam_sRGB(double v) {
    if(v<=0.0031308)
      v *= 12.92;
    else 
      v = 1.055*pow(v,1.0/2.4)-0.055;
    return int(v*255+0.5); // This is correct in C++. Other languages may not
                           // require +0.5
}

// GRAY VALUE ("brightness")
int gray(int r, int g, int b) {
    return gam_sRGB(
            rY*inv_gam_sRGB(r) +
            gY*inv_gam_sRGB(g) +
            bY*inv_gam_sRGB(b)
    );
}

其他回答

与其迷失在这里提到的随机选择的公式中,我建议您使用W3C标准推荐的公式。

下面是WCAG 2.0 SC 1.4.3相对亮度和对比度公式的简单而精确的PHP实现。它生成的值适合于评估符合WCAG要求的比率,就像在这个页面上一样,因此适用于任何web应用程序。这对于移植到其他语言来说是微不足道的。

/**
 * Calculate relative luminance in sRGB colour space for use in WCAG 2.0 compliance
 * @link http://www.w3.org/TR/WCAG20/#relativeluminancedef
 * @param string $col A 3 or 6-digit hex colour string
 * @return float
 * @author Marcus Bointon <marcus@synchromedia.co.uk>
 */
function relativeluminance($col) {
    //Remove any leading #
    $col = trim($col, '#');
    //Convert 3-digit to 6-digit
    if (strlen($col) == 3) {
        $col = $col[0] . $col[0] . $col[1] . $col[1] . $col[2] . $col[2];
    }
    //Convert hex to 0-1 scale
    $components = array(
        'r' => hexdec(substr($col, 0, 2)) / 255,
        'g' => hexdec(substr($col, 2, 2)) / 255,
        'b' => hexdec(substr($col, 4, 2)) / 255
    );
    //Correct for sRGB
    foreach($components as $c => $v) {
        if ($v <= 0.04045) {
            $components[$c] = $v / 12.92;
        } else {
            $components[$c] = pow((($v + 0.055) / 1.055), 2.4);
        }
    }
    //Calculate relative luminance using ITU-R BT. 709 coefficients
    return ($components['r'] * 0.2126) + ($components['g'] * 0.7152) + ($components['b'] * 0.0722);
}

/**
 * Calculate contrast ratio acording to WCAG 2.0 formula
 * Will return a value between 1 (no contrast) and 21 (max contrast)
 * @link http://www.w3.org/TR/WCAG20/#contrast-ratiodef
 * @param string $c1 A 3 or 6-digit hex colour string
 * @param string $c2 A 3 or 6-digit hex colour string
 * @return float
 * @author Marcus Bointon <marcus@synchromedia.co.uk>
 */
function contrastratio($c1, $c2) {
    $y1 = relativeluminance($c1);
    $y2 = relativeluminance($c2);
    //Arrange so $y1 is lightest
    if ($y1 < $y2) {
        $y3 = $y1;
        $y1 = $y2;
        $y2 = $y3;
    }
    return ($y1 + 0.05) / ($y2 + 0.05);
}

把这看作是对Myndex的精彩回答的补充。正如他(和其他人)解释的那样,计算RGB颜色的相对亮度(和感知亮度)的算法是设计用于线性RGB值的。你不能只是将它们应用到原始sRGB值上,并希望得到相同的结果。

理论上,这一切听起来都很棒,但我真的需要亲眼看看证据,所以,受到彼得·赫塔克(Petr Hurtak)的颜色渐变的启发,我自己做了一个。它们说明了两种最常见的算法(ITU-R建议BT.601和BT.709),并清楚地说明了为什么应该使用线性值(而不是伽玛校正值)进行计算。

首先,下面是旧的ITU BT.601算法的结果。左边的使用原始sRGB值。右边的使用线性值。

ITU-R BT.601颜色亮度梯度

0.299 r + 0.587 g + 0.114 b

在这个分辨率下,左边的照片实际上看起来非常好!但如果你仔细观察,你会发现一些问题。在更高的分辨率下,不需要的人工制品更加明显:

线性的不受这些影响,但是有很多干扰。让我们将其与ITU-R建议BT.709进行比较……

ITU-R BT.709颜色亮度梯度

0.2126 r + 0.7152 g + 0.0722 b

哦男孩。显然不打算与原始sRGB值一起使用!然而,这正是大多数人所做的!

在高分辨率下,你可以真正看到这个算法在使用线性值时是多么有效。它没有之前那个那么多噪音。虽然这些算法都不是完美的,但这个算法已经是最好的了。

亮度值= 0.3 R + 0.59 G + 0.11 B

http://www.scantips.com/lumin.html

如果你想知道颜色有多接近白色你可以用欧几里得距离(255,255,255)

我认为RGB颜色空间相对于L2欧几里得距离在感知上是不均匀的。 统一空间包括CIE LAB和LUV。

正如@Nils Pipenbrinck所提到的:

所有这些方程在实践中都很有效,但如果你需要非常精确,你就必须[做一些额外的gamma东西]。在深灰色中,忽略伽玛和正确伽玛之间的亮度差异高达20%。

这里有一个完全自包含的JavaScript函数,它做了“额外的”工作来获得额外的准确性。它基于Jive Dadson对这个问题的c++回答。

// Returns greyscale "brightness" (0-1) of the given 0-255 RGB values
// Based on this C++ implementation: https://stackoverflow.com/a/13558570/11950764
function rgbBrightness(r, g, b) {
  let v = 0;
  v += 0.212655 * ((r/255) <= 0.04045 ? (r/255)/12.92 : Math.pow(((r/255)+0.055)/1.055, 2.4));
  v += 0.715158 * ((g/255) <= 0.04045 ? (g/255)/12.92 : Math.pow(((g/255)+0.055)/1.055, 2.4));
  v += 0.072187 * ((b/255) <= 0.04045 ? (b/255)/12.92 : Math.pow(((b/255)+0.055)/1.055, 2.4));
  return v <= 0.0031308 ? v*12.92 : 1.055 * Math.pow(v,1.0/2.4) - 0.055;
}

请参阅Myndex的答案以获得更准确的计算。

HSV色彩空间应该做的把戏,看维基百科文章取决于你正在工作的语言,你可能会得到一个库转换。

H是色调,是颜色的数值(即红色,绿色…)

S是颜色的饱和度,即它有多“强烈”

V是颜色的亮度。